首页> 外文会议>ASME international conference on nanochannels, microchannels and minichannels >Capillary force-driven fluid flow of a wetting liquid on a surface with multiple parallel open microchannels
【24h】

Capillary force-driven fluid flow of a wetting liquid on a surface with multiple parallel open microchannels

机译:毛细管力驱动润湿液在具有多个平行开放微通道的表面上的流动

获取原文

摘要

Fluid flow driven by the capillary force is omnipresent in nature and important in many engineering technologies. The focus of this work is capillary force-driven fluid flow of a wetting liquid in open microchannels when a liquid droplet is gently introduced to a metal surface on which multiple parallel microchannels with an open rectangular cross section are formed. It is found that, aided with a high-speed camera, the capillary-force driven fluid behavior consists of uni-directional spreading of the bulk droplet on the microchannel fins and liquid penetration into the microchannels. The kinetics of fluid flow due to the liquid penetration into the microchannels can be divided into three distinct stages: initial stage, transition stage, and Washburn stage; only in the Washburn stage, the flow has a penetration length-time dependence in proportion to square root of time as described by the Washburn's equation. Comparison with liquid spreading on a plain surface having only one microchannel (the same geometry and size) revealed that the bulk droplet spreading on the microchannel fins, after elapse of the initial stage, has little effect on the fluid flow kinetics in the multiple microchannels. Some analytical results shed more insights into the capillary force-driven fluid flow in open microchannels.
机译:毛细作用力驱动的流体流在自然界无处不在,在许多工程技术中都很重要。这项工作的重点是当液滴缓慢引入到金属表面上时,润湿液体在开放微通道中的毛细管力驱动的流体流动,该液滴在其上形成了多个具有开放矩形横截面的平行微通道。发现在高速相机的辅助下,毛细管力驱动的流体行为包括散装液滴在微通道散热片上的单向扩散以及液体渗透到微通道中。由于液体渗透到微通道中而引起的流体流动动力学可以分为三个不同的阶段:初始阶段,过渡阶段和Washburn阶段。仅在Washburn阶段,流动才具有与Washburn方程所描述的时间的平方根成比例的穿透长度-时间依赖性。与在仅具有一个微通道(相同的几何形状和尺寸)的平坦表面上铺展的液体的比较表明,散布在初始通道过去之后散布在微通道翅片上的液滴对多个微通道中的流体流动动力学影响很小。一些分析结果为打开微通道中毛细管力驱动的流体流动提供了更多的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号