首页> 外文会议>ASME international conference on energy sustainability >EVALUATING THE COMPETITIVENESS OF ENERGY STORAGE FOR MITIGATING THE STOCHASTIC, VARIABLE ATTRIBUTES OF RENEWABLES ON THE GRID
【24h】

EVALUATING THE COMPETITIVENESS OF ENERGY STORAGE FOR MITIGATING THE STOCHASTIC, VARIABLE ATTRIBUTES OF RENEWABLES ON THE GRID

机译:评估储能竞争力以缓解电网上可再生能源的随机,可变属性

获取原文

摘要

Energy storage has recently attracted significant interest as an enabling technology for integrating stochastic, variable renewable power into the electric grid. To meet the renewable portfolio standards targets imposed by 29 U.S. states and the District of Columbia, electricity production from wind technology has increased significantly. At the same time, wind turbines, like many renewables, produce power in a manner that is stochastic, variable, and non-dispatchable. These attributes introduce challenges to generation scheduling and the provision of ancillary services. To study the impacts of the stochastic variability of wind on regional grid operation and the role that energy storage could play to mitigate these impacts, Pacific Northwest National Laboratory (PNNL) has developed a series of linked, complex techno-economic-environmental models to address two key questions: A) What are the future expanded balancing requirements necessary to accommodate enhanced wind turbine capacity, so as to meet the renewable portfolio standards in 2020? Specific analyses are conducted for the four North American Electric Reliability Corporation (NERC) western subregions. B) What are the most cost-effective technological solutions for providing either fast ramping generation or energy storage to serve these balancing requirements?PNNL applied a stochastic approach to assess the future, expanded balancing requirements for the four western subregions with high wind penetration in 2020. The estimated balancing requirements are quantified for four subregions: Arizona-New Mexico-Southern Nevada (AZ-NM-SNV), California-Mexico (CA-MX), Northwest Power Pool (NWPP), and Rocky Mountain Power Pool (RMPP). Model results indicate that the new balancing requirements will span a spectrum of frequencies, from minute-to-minute variability (intra-hour balancing) to those indicating cycles over several hours (inter-hour balancing). The sharp ramp rates in the intra-hour balancing are of significant concern to grid operators. Consequently, this study focuses on analyzing the intra-hour balancing needs.A detailed, life-cycle cost (LCC) modeling effort was used to assess the cost competitiveness of different technologies to address the future intra-hour balancing requirements. Technological solutions considered include combustion turbines, sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped-hydro energy storage (PHES), compressed air energy storage (CAES), flywheels, redox flow batteries, and demand response (DR). Hybrid concepts were also evaluated. For each technology, distinct power and energy capacity requirements are estimated. LCC results for the sole application of intra-hour balancing indicate that the most cost competitive technologies include Na-S batteries, flywheels, and Li-ion assuming future cost reductions. Demand response using smart charging strategies was found to also be cost-competitive with natural gas combustion turbines. This finding is consistent among the four subregions and is generally applicable to other regions.
机译:能量存储作为一种将随机可变的可再生能源集成到电网中的使能技术,最近引起了人们的极大兴趣。为了达到美国29个州和哥伦比亚特区制定的可再生能源投资组合目标,风力技术的发电量已大大增加。同时,风力涡轮机像许多可再生能源一样,以随机,可变和不可调度的方式发电。这些属性给发电调度和辅助服务的提供带来了挑战。为了研究风的随机变化对区域电网运行的影响以及储能在减轻这些影响方面的作用,太平洋西北国家实验室(PNNL)开发了一系列相互关联的,复杂的技术经济环境模型来解决两个关键问题:A)为了适应增强的风力涡轮机容量,以达到2020年的可再生能源投资组合标准,未来需要扩大的平衡要求是什么?针对四个北美电力可靠性公司(NERC)西部分区进行了具体分析。 B)为满足这些平衡要求而提供快速发电或储能的最具成本效益的技术解决方案是什么?PNNL采用一种随机方法来评估2020年风速较高的四个西部次区域的未来扩展平衡要求。估计的平衡需求针对以下四个子区域进行了量化:亚利桑那州-新墨西哥州-内华达州南部(AZ-NM-SNV),加利福尼亚州-墨西哥州(CA-MX),西北电力池(NWPP)和落基山电力池(RMPP) 。模型结果表明,新的平衡要求将涵盖频率范围,从分钟到分钟的可变性(小时内平衡)到指示几个小时内的周期的频率(小时间平衡)。在小时内平衡中急剧上升的速率是电网运营商非常关注的问题。因此,本研究着重分析小时内平衡需求。详细的生命周期成本(LCC)建模工作用于评估不同技术的成本竞争力,以满足未来的小时内平衡需求。所考虑的技术解决方案包括燃气轮机,钠硫(NaS)电池,锂离子(Li-ion)电池,抽水蓄能(PHES),压缩空气储能(CAES),飞轮,氧化还原液流电池以及需求响应( DR)。还对混合概念进行了评估。对于每种技术,都会估算出不同的功率和能量容量要求。仅用于小时内平衡的LCC结果表明,最具成本竞争力的技术包括Na-S电池,飞轮和Li-ion(假设将来会降低成本)。发现使用智能充电策略的需求响应对于天然气燃气轮机也具有成本竞争力。这一发现在四个次区域之间是一致的,并且通常适用于其他区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号