首页> 外文会议>AIAA plasmadynamics and lasers conference >Measurements and Kinetic Modeling Analysis of Energy Coupling in Nanosecond Pulse Dielectric Barrier Discharges1
【24h】

Measurements and Kinetic Modeling Analysis of Energy Coupling in Nanosecond Pulse Dielectric Barrier Discharges1

机译:纳秒脉冲介质屏障排放中的能量耦合测量和动力学建模分析1

获取原文

摘要

Nsec pulse discharge plasma imaging, coupled pulse energy measurements, and kinetic modeling are used to analyze the mechanism of energy coupling in high repetition rate, spatially uniform, nanosecond pulse discharges in air in plane-to-plane geometry. At these conditions, coupled pulse energy scales nearly linearly with pressure (number density), with energy coupled per molecule being nearly constant, in good agreement with the kinetic model predictions. In spite of high peak reduced electric field reached before breakdown, E/N ~ 500-700 Td, the reduced electric field in the plasma after breakdown is much lower, E/N-50-100 Td, predicting that a significant fraction of energy coupled to the air plasma, up to 30-40%, is loaded into nitrogen vibrational mode.A self-similar, local ionization kinetic model predicting energy coupling to the plasma in a surface ionization wave discharge produced by a nanosecond voltage pulse, has been developed. The model predicts key discharge parameters such as ionization wave speed and propagation distance, electric field, electron density, plasma layer thickness, and pulse energy coupled to the plasma, demonstrating good qualitative agreement with experimental data and two-dimensional kinetic modeling calculations. The model allows an analytic solution and lends itself to incorporating into existing compressible flow codes, at very little computational cost, for in-depth analysis of the nanosecond discharge plasma flow control mechanism. The use of the model would place the main emphasis on coupling of localized thermal perturbations produced by the discharge with the flow via compression waves, as well as on instability development and coherent structures formation, and would provide quantitative insight into the flow control mechanism on a long time scale.
机译:NSEC脉冲放电等离子体成像,耦合脉冲能量测量和动力学建模用于分析在平面到平面几何形状中的空气中的高重复率,空间均匀,纳秒脉冲放电的能量耦合机理。在这些条件下,耦合脉冲能量几乎线性地用压力(数密度)缩小,并且每个分子耦合的能量几乎恒定,与动力学模型预测良好。尽管在击穿前达到高峰峰值达到的电场,但击穿后等离子体中的降低电场达到了高峰,则较低,E / N-50-100 Td大得多,预测能量大部分耦合到空气等离子体,高达30-40%,加载到氮气振动模式中。自相似的局部电离动力学模型预测通过纳秒电压脉冲产生的表面电离波放电中的等离子体的能量耦合。已经存在发达。该模型预测了诸如电离波速和传播距离,电场,电子密度,等离子体层厚度和耦合到等离子体的脉冲能量的关键放电参数,展示了与实验数据和二维动力学建模计算的良好定性协议。该模型允许分析解决方案并利用本身以非常少的计算成本结合到现有的可压缩流程码中,以便深入地分析纳秒放电等离子体流量控制机构。该模型的使用将主要重点强调通过通过压缩波和不稳定的发育和相干结构形成的流量产生的局部热扰动的耦合,以及形成对流量控制机制的定量洞察长期尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号