首页> 外文会议>AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference >A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates
【24h】

A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates

机译:基于热力学的网格目标工作势理论,用于预测纤维增强层压板的腹腔内渐进损伤和破坏

获取原文

摘要

A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.
机译:提出了一种基于热力学的工作势理论,用于对纤维增强层压板的渐进式损伤和破坏进行建模。当前的多内部状态变量(ISV)公式(增强的Schapery理论(EST))利用单独的ISV对损坏和故障的影响进行建模。损坏被认为是材料中任何结构变化的结果,表现为应力对应变响应的峰前非线性。相反,失效被认为是导致峰后应变软化的任何机制演变的结果。假定基质微损伤是连续纤维增强聚合物基质层压板的主要损伤机理,并且其演化受单个ISV的控制。引入了三个附加的ISV,以解决由于I型横向裂纹,II型横向裂纹和I型轴向失效而导致的失效。通常,故障演变(即峰后应变软化)会导致在有限元方法(FEM)设置下,病理学上依赖于网格的解决方案。因此,将一致的字符元素长度引入到三个故障ISV演变的公式中。利用总工作潜力相对于每个ISV的平稳性,得出了ISV的一组热力学一致的演化方程。该理论已在商用FEM软件中实现。证明了在破坏过程中耗散的总能量的客观性,以及在FEM网格中的细化效果。该模型还通过两个层压T800 / 3900-2层压板的实验结果进行了验证,这些层压板包含一个中央槽口和不同的纤维取向堆叠顺序。将从模型获得的总载荷与位移,总载荷与局部应变计数据以及宏观失效路径进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号