首页> 外文会议>AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference >Effective Stiffness of Wavy Aligned Carbon Nanotubes for Modeling of Controlled-Morphology Polymer Nanocomposites
【24h】

Effective Stiffness of Wavy Aligned Carbon Nanotubes for Modeling of Controlled-Morphology Polymer Nanocomposites

机译:波浪状排列的碳纳米管对受控形态聚合物纳米复合材料建模的有效刚度

获取原文

摘要

The mechanics of nano-scale fiber reinforced polymer matrices are investigated using an analytical reduction and finite element modeling to consider the effect of waviness of the reinforcing carbon nanotubes (CNTs). Nanofiber-reinforced polymer matrices are of significant interest as structural materials in and of themselves, and particularly as hybridized matrices within bulk polymer-matrix composites containing standard micron-dia. fibers, e.g., carbon fiber reinforced plastics (CFRP) that are used extensively in aerospace applications. Here, a representative volume element (RVE) of aligned, continuous, and wavy CNTs in a polymer matrix is modeled to deduce the waviness effects on the elastic properties of the aligned-CNT polymer nanocomposite (A-PNC) as a function of the properties of the reinforcing fibers (CNTs), including CNT type and degree of waviness. Experimental modulus data as a function of CNT volume fraction for an A-PNC RVE using an aerospace-grade thermoset epoxy is used to highlight the importance of waviness and the axial vs. bending stiffness contributions of the CNTs to RVE stiffness. Straightforward implementation for single- and multi-walled CNTs improves upon prior work that considers the filaments to have a solid, rather than hollow, cross section. The derivation of effective axial and bending stiffness for the CNT filaments utilizes proper modulus-thickness pairs for investigating more complex cases. Waviness is noted to be the dominant morphological feature controlling the elastic response of such PNCs, effectively significantly reducing stiffness relative to rule of mixtures predictions. Future work will focus on model-experiment correlation with in-progress experimental work to characterize the full, non-isotropic, constitutive relation for A-PNCs.
机译:使用分析还原和有限元建模研究了纳米级纤维增强聚合物基体的力学,以考虑增强碳纳米管(CNT)的波纹度的影响。纳米纤维增强的聚合物基质作为其自身的结构材料,特别是作为包含标准微米直径的本体聚合物-基质复合材料中的杂交基质,引起了人们的极大关注。纤维,例如广泛用于航空航天应用的碳纤维增强塑料(CFRP)。在此,对聚合物基体中排列,连续和波浪状的CNT的代表性体积元素(RVE)进行建模,以得出波纹度对排列的CNT聚合物纳米复合材料(A-PNC)弹性性能的影响,取决于其性能增强纤维(CNT)的数量,包括CNT的类型和波纹度。对于使用航空级热固性环氧树脂的A-PNC RVE,实验模量数据是CNT体积分数的函数,用于强调波纹度以及CNT对RVE刚度的轴向和弯曲刚度贡献的重要性。对于单壁和多壁CNT的简单实施,在以前的工作中得到了改进,以前的工作认为细丝具有实心而不是中空的横截面。 CNT细丝的有效轴向刚度和弯曲刚度的推导使用适当的模量-厚度对来研究更复杂的情况。波纹度是控制此类PNC弹性响应的主要形态特征,相对于混合物预测规则而言,有效地显着降低了刚性。未来的工作将集中于模型与实验的相关性以及正在进行的实验工作,以表征A-PNC的完整,非各向同性本构关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号