【24h】

Stratified media: nonlinear ODE is better

机译:分层介质:非线性ODE更好

获取原文

摘要

Propagation of light in stratified media is described with Maxwell's partial differential equations (PDE). Separation of variables allow to decouple the linear PDE's to obtain second order non autonomous linear ODEs for the electric and magnetic fields. In the last decades, the problem has been tackled with matrices whose elements are linearly independent solutions of the fields.In our approach, although counter-intuitive, the linear differential equations are transformed into a non-linear ODE. To this end, the field is written in terms of amplitude and phase variables. An Ermakov invariant then permits the decoupling of the amplitude and phase nonlinear equations. The amplitude or Milne nonlinear equation is then solved numerically. This method has important advantages: i) initial or final conditions are easily imposed, ii) important physical quantities such as the reflectivity are readily obtained, iii) no further approximations have to be made iv) complex profiles can be modeled with arbitrary degree of precision. The abrupt and adiabatic limits are obtained but most importantly, intermediate more realistic cases can also be tackled, for example, adsorption between thin film layers. Novel effects are addressed such as enhanced reflectivity at derivative discontinuities where the refractive index is continuous.
机译:麦克斯韦偏微分方程(PDE)描述了光在分层介质中的传播。变量的分离允许解耦线性PDE,以获得电场和磁场的二阶非自治线性ODE。在过去的几十年中,问题的解决方案是矩阵的元素是场的线性独立解。在我们的方法中,尽管反直观,但线性微分方程被转换为非线性ODE。为此,用幅度和相位变量来表示该字段。然后,Ermakov不变量允许振幅和相位非线性方程解耦。然后对振幅或米尔恩非线性方程进行数值求解。该方法具有重要的优点:i)容易施加初始条件或最终条件; ii)容易获得重要的物理量,例如反射率; iii)无需进一步近似; iv)复杂的轮廓可以任意精度建模。 。获得了突变极限和绝热极限,但是最重要的是,还可以解决中间更现实的情况,例如薄膜层之间的吸附。解决了新颖的效果,例如在折射率连续的导数不连续点处增强了反射率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号