首页> 外文会议>Annual meeting of the Institute of Nuclear Materials Management >Uncertainty Components for Two Approaches to Spent Fuel Assay
【24h】

Uncertainty Components for Two Approaches to Spent Fuel Assay

机译:两种耗油量测定方法的不确定度分量

获取原文

摘要

The Next Generation Safeguards Initiative is developing nondestructive assay (NDA) methods to assay Pu mass in spent fuel assemblies. Uncertainty quantification is an important task in most assay methods, and particularly for spent fuel assay. A computer model (MCNPX) was used to predict the isotope masses and the spatial distribution of masses in the spent fuel assemblies dependent on three inputs: initial fuel enrichment (IE), fuel utilization (burnup, BU), and cooling time (CT). A variety of virtual assemblies were created for a range of BU, IE, and CT and additional computer modeling was done to simulate the expected detector responses (DR) for any of various NDA measurement options such as differential die-away or passive neutron albedo reactivity. The DR is given in terms of multiple outputs including the effective fissile content or the content of particular fissile isotopes such as ~(239)Pu and ~(240)Pu.Computer model uncertainty is therefore expected to be a large component of the total uncertainty in using measured IE, BU, and CT plus MCNPX and one or more measured DRs to predict fissile content and total Pu mass. This paper describes uncertainty components for each of two analysis approaches being followed. The first approach ("traditional") attempts to correct for neutron absorbers that impact the relation between DRs and Pu mass for different values of IE, BU, and CT. The second approach ("code emulator") interpolates MCNPX at various (IE, BU, CT) values that are weighted by agreement between measured and MCNPX-predicted DRs.This work is part of a larger effort sponsored by the Next Generation Safeguards Initiative to develop an integrated instrument, comprised of individual NDA techniques with complementary features, that is fully capable of determining Pu mass in spent fuel assemblies.
机译:下一代保障措施计划正在开发非破坏性检测(NDA)方法,以检测乏燃料组件中的Pu量。不确定性量化是大多数测定方法中的重要任务,尤其是对于乏燃料测定而言。使用计算机模型(MCNPX)来预测乏燃料组件中的同位素质量和质量的空间分布,取决于三个输入:初始燃料富集(IE),燃料利用率(燃耗,BU)和冷却时间(CT) 。针对一系列BU,IE和CT创建了各种虚拟组件,并进行了额外的计算机建模,以模拟各种NDA测量选项(如差模消失或被动中子反照率反应)中预期的探测器响应(DR) 。 DR是根据多种输出给出的,包括有效易裂变含量或特定易裂变同位素(如〜(239)Pu和〜(240)Pu)的含量。 因此,在使用测得的IE,BU和CT加上MCNPX和一个或多个测得的DR来预测易裂变含量和总Pu质量时,计算机模型不确定性将是总不确定性的很大一部分。本文介绍了所遵循的两种分析方法中每种方法的不确定性成分。第一种方法(“传统”)尝试校正影响IE,BU和CT不同值的DR和Pu质量之间关系的中子吸收剂。第二种方法(“代码仿真器”)以各种(IE,BU,CT)值插值MCNPX,这些值通过测量的和MCNPX预测的DR之间的一致性加权。 这项工作是“下一代保障计划”(Next Generation Safeguards)赞助的一项更大工作的一部分,该工作旨在开发一种集成仪器,该仪器由具有互补功能的单个NDA技术组成,完全能够确定乏燃料组件中的Pu质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号