首页> 外文会议>European Photovoltaic Solar Energy Conference and Exhibition >ENABLING TECHNOLOGY FOR p-TYPE SURFACE PASSIVATION OF Si SOLAR CELLS 27th EU PVSEC, FRANKFURT GERMANY, SEP 24-SEP29, 2012, 2DO.8.6
【24h】

ENABLING TECHNOLOGY FOR p-TYPE SURFACE PASSIVATION OF Si SOLAR CELLS 27th EU PVSEC, FRANKFURT GERMANY, SEP 24-SEP29, 2012, 2DO.8.6

机译:P型表面钝化能源促进技术SI太阳能电池27日欧盟PVSEC,法兰克福德国,2012年9月24日24日,2.8.6

获取原文

摘要

Effective surface passivation of p-type Si surfaces is a key efficiency improvement enabler for silicon solar cells, particularly through improvement of the back surface in PERC (Passivated Emitter Rear Cell) architecture. Low surface recombination velocity for p-type Si, due to negative fixed charge and low interface state density has attracted significant interest in Al_2O_3 film for surface passivation in solar cells. Although laboratory scale results of greater than 19% efficient PERC cells using co-fired Al approach have been reported, several challenges remain for mass implementation of passivation technology. A SiN film cap is deposited on Al_2O_3 to (a) protect Al_2O_3 from degradation during Al contact firing step (b) complement 10-20nm thick Al_2O_3 layer to improve rear reflectivity of the solar cell. The use of SiN cap layer has two manufacturing challenges: (i) Need to eliminate blistering when Al_2O_3 and SiN film stack is co-fired (ii) Need for additional handling and equipment to deposit SiN when Atomic Layer Deposition (ALD) is used to grow Al_2O_3. Although Al_2O_3 films can be grown by Plasma Enhanced Chemical Vapor Deposition (PECVD), thereby eliminating need for separate process technologies for Al_2O_3 and SiN, previous efforts by other authors have shown inferior passivation by PECVD compared to the ALD approach. We address these two challenges by using a novel PECVD based approach. Blistering failure modes due to interface delamination and AlO/SiN film interaction during firing are proposed and blister free film stacks are demonstrated. Using insight gained from blistering studies, process conditions and a process-enabling PECVD chamber are identified to demonstrate firing stable Al_2O_3/SiN films capable of ALD-like passivation performance together with the high productivity of PECVD. Surface Recombination Velocity (SRV) on realistic solar wafer surfaces with fired Al_2O_3/SiN films are around 20-50 cm/sec @ 1e15 cm-3 on p-type 1 Ω-cm substrates. Contrary to previous findings by other groups, we are able to grow Al_2O_3 films by PECVD to thicknesses >100nm without blistering issues as deposited or after firing, demonstrating further benefits of this approach over other methods for PECVD Al_2O_3 described in literature. PERC cells are fabricated using the Al_2O_3/SiNx stack for the rear passivation after POCl_3 emitter formation. Laser based approach is adopted to open contact in Al_2O_3/SiN film. Screen printed Al paste formulation and firing sequence are optimized to obtain void-free contact formation. The measured cells have measured efficiency of 19.3%. The 0.6% improved efficiency compared to a back-polished Al BSF baseline corresponds to increases of 5-8mV in open-circuit voltage, higher short circuit current and quantum efficiency gain at longer (800-1200nm) wavelengths. These results demonstrate that this novel PECVD technique provides ALD-like passivation while employing a production worthy approach for high efficiency PERC cells with high-quality, firingstable Al_2O_3/SiNx stacks.
机译:P型Si表面的有效表面钝化是硅太阳能电池的关键效率改进能器,特别是通过改善PERC(钝化发射极电池)架构的后表面。对于p型Si的低表面重组速度,由于负固定电荷和低界面状态密度对太阳能电池的表面钝化引起了显着的兴趣。据报道,虽然已经报告了使用共用AL方法的大于19%的效率培养的Perc细胞的实验室规模结果,但仍然有几项挑战仍然用于钝化技术的大规模实施。 SiN膜帽沉积在Al_2O_3的的(a)铝接触烧制步骤(b)补足为10-20nm厚Al_2O_3的层,以提高太阳能电池的背面反射率的过程中保护Al_2O_3的降解。使用的SiN盖层的具有两个制造的挑战:(ⅰ)需要消除起泡时Al_2O_3的和SiN膜堆是共烧(ⅱ)需要额外的处理和设备来沉积的SiN时原子层沉积(ALD)是用于生长AL_2O_3。尽管可以通过等离子体增强的化学气相沉积(PECVD)来生长AL_2O_3薄膜,从而消除了对AL_2O_3和SIN的单独工艺技术,其他作者的努力与PECVD相比,与ALD方法相比,其他作者的努力显示出较差的钝化。我们通过使用基于新的PECVD方法来解决这两个挑战。提出了引起的射击引起的失效模式和烧制过程中的ALO / SIN膜相互作用,并证明了吸塑膜堆叠。使用从起泡研究中获得的洞察力,工艺条件和过程实现的PECVD室被识别出展示能够以及PECVD的高生产率的燃烧稳定的AL_2O_3 / SIN膜。具有烧制AL_2O_3 / SIN膜的现实太阳能晶片表面上的表面复合速度(SRV)在P型1Ω-CM基板上的射击型α10_3/ SIN薄膜约为20-50cm / sec @ 1e15cm-3。相反,其他小组先前的调查结果,我们能够通过PECVD生长Al_2O_3的薄膜厚度来> 100nm的不起泡的问题沉积或烧成后,显示出了PECVD Al_2O_3的文献中描述的这种方法比其他方法的进一步好处。使用AL_2O_3 / SINX堆栈制造PERC细胞,用于在POCL_3发射极形成后后钝化。采用基于激光的方法在AL_2O_3 / SIN膜中打开接触。筛选印刷的Al浆料配方和烧制序列经过优化,以获得无空隙接触形成。测量的细胞的测量效率为19.3%。与后抛光的AL BSF基线相比的0.6%提高效率对应于开路电压的增加5-8mV,较长的短路电流和较长(800-1200nm)波长的较短电流和量子效率增益。这些结果表明,这种新型PECVD技术提供了类似的钝化钝化,同时采用具有高质量的高效PERC细胞的生产价值的方法,燃烧的AL_2O_3 / SINX堆栈。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号