首页> 外文会议>Conference on sensors and smart structures technologies for civil, mechanical, and aerospace systems >Mimicking the Human Nervous System with a Triboluminescence Sensory Receptor for the Structural Health Monitoring of Composite Structures
【24h】

Mimicking the Human Nervous System with a Triboluminescence Sensory Receptor for the Structural Health Monitoring of Composite Structures

机译:用Triboluminescence感觉受体模拟人类神经系统,用于复合结构的结构健康监测

获取原文

摘要

The human nervous system (HNS) provides one of the most advanced examples of how to monitor the structural state of a complex system. In attempts to mimic the HNS, a key component has been the development of the sensory receptor. This paper reports on the development of a triboluminescence (TL)-based sensory receptor that converts mechanical energy from fatigue or impact loads and cracks propagation, into optical signals. This sensor system has potential for wireless, in-situ and distributed sensing (WID). The approach differs from existing fiber optic methods in that it does not require any external light source to function. The optical signal is generated through mechanical excitation of the highly triboluminescent ZnS:Mn. It is then transmitted through optical fibers to photomultiplier tubes (PMT) for detecting, quantifying and locating (with further analysis), intrinsic damage in critical engineering structures like concrete bridges. The TL sensory receptor consists of a sensitized portion of a polymer optical fiber (POF) coated with epoxy containing ZnS:Mn crystals. The sensory receptors were then incorporated into cementitious and polymer samples. Results from preliminary investigation showed that the TL sensory receptor gives repeatable responses under multiple impact loads. The triboluminescent intensity of the signal is directly related to the magnitude of the impact load. Results from dynamic mechanical analysis show a reduction in the Tg of the ITOF coating (TSR) with higher concentration of the triboluminescent (ZnS:Mn) crystals for the epoxy system used. There was however significant enhancement of the modulus with increase in the TL crystals. High-performance epoxy system with the principles of particulate composites would be applied in subsequent work to optimize the properties and performance of the TL sensor system.
机译:人类神经系统(HNS)提供了有关如何监视复杂系统的结构状态的最先进的示例之一。在模仿HNS的尝试中,关键组件是感觉受体的发展。本文报道了基于三聚体发光(TL)的感觉受体的发展,该感受器将来自疲劳或冲击载荷以及裂纹扩展的机械能转换为光信号。该传感器系统具有无线,原位和分布式传感(WID)的潜力。该方法与现有的光纤方法的不同之处在于,它不需要任何外部光源即可工作。通过高度摩擦发光的ZnS:Mn的机械激发来产生光信号。然后将其通过光纤传输到光电倍增管(PMT),以检测,量化和定位(进一步分析)关键工程结构(如混凝土桥梁)中的固有损坏。 TL感官受体由聚合物光纤(POF)的敏化部分组成,该部分涂覆有含环氧基的ZnS:Mn晶体。然后将感觉受体掺入水泥和聚合物样品中。初步研究的结果表明,TL感觉受体在多种冲击负荷下均能产生可重复的响应。信号的摩擦发光强度与冲击载荷的大小直接相关。动态力学分析的结果表明,对于所用的环氧树脂体系,随着浓度更高的摩擦发光(ZnS:Mn)晶体的出现,ITOF涂层(TSR)的Tg降低。然而,随着TL晶体的增加,模量显着提高。具有微粒复合材料原理的高性能环氧系统将用于后续工作中,以优化TL传感器系统的性能和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号