首页> 外文会议>International symposium on air breathing engines;ISABE 2011 >V-GUTTER STABILIZED TURBULENT PREMIXED FLAME AND LEAN BLOWOUT
【24h】

V-GUTTER STABILIZED TURBULENT PREMIXED FLAME AND LEAN BLOWOUT

机译:V型涡流稳定湍流预混合火焰和稀薄吹出

获取原文

摘要

Three-dimensional non-reacting and reacting flows past a V-gutter are modeled using FLUENT. Incompressible Large-Eddy Simulations with Dynamic Subgrid Kinetic Energy Model, C-progress variable equation and Zimont turbulent flame speed closure are used. Grid sensitivity study is conducted and the numerical results are validated with results reported in the literature. The non-reacting flow conditions show that the flow separates at the trailing edges. This leads to two shear layers shedding counter-rotating vortices that frequently interact with each other due to the V-gutter opening. Vortex stretching is greater than vortex diffusion in the near-field wake and flow non-uniformity is nearly negligible for the temporal and spatial spanwise vorticity rate of change (DWε/Dt). The reacting flow is established by igniting the stoichiometric flow (Φ=1.0). A propane-air flame attached to the trailing edges of the flameholder is obtained. The flame sheet is thin and smooth near the flameholder and thick and wrinkled further downstream the shear layers. Reaction zones from the shear layer flame sheet are transported towards the transverse centerplane near the minimum flow velocity creating a concave-like region. This region exhibits greatest turbulent flame speed, and thermal expansion increases the flow velocity downstream the concave-like flame region. Baroclinic torque is the largest source for DWε/Dt. Nevertheless, flow non- uniformity is enhanced due to thermal expansion and can act as a source and sink for(D(Wε)/Dt. Reducing Φ to 0.8 causes the flame to nearly blowout, but the hot spot inside the flameholder re-ignites the flame. The flame tries to propagate downstream, but the von Karman street extinguishes the flame in downstream areas. The flame is now nearly perpendicular to the mainstream, but it is still attached to the flameholder trailing edges. The wake shrinks and thermal expansion no longer occurs downstream the flame. The baroclinic torque and prevailing Strouhal number (St) are reduced, while drag (C_D) increases and stretching becomes the major source for (DWε/Dt). At 0=0.6 the flame blows out globally and the wake further shrinks until it matches the same profile of that of the non-reacting condition. Now, stretching is practically the only contributor to (D(Wε)/Dt) in the near wake. C_D increases and St further decreases, respectively, reaching values closer to that of the non-reacting condition. Based in this numerical study it is inferred that highly statically stable flameholders would be characterized by increased principal St, baroclinic torque, shear layer length, and wake length, while reducing C_D and vortex stretching.
机译:使用FLUENT对通过V型槽的三维非反应流和反应流进行建模。使用具有动态子网格动能模型,C进程变量方程和Zimont湍流火焰速度闭合的不可压缩大涡模拟。进行了网格敏感性研究,并用文献中报道的结果验证了数值结果。非反应流动条件表明流动在后缘分离。这导致两个剪切层脱落反向旋转的涡流,由于V型槽的打开,涡流经常相互作用。涡旋拉伸大于近场尾流中的涡旋扩散,对于时间和空间展向的涡度变化率(DWε/ Dt),流动的不均匀性几乎可以忽略不计。通过点燃化学计量流量(Φ= 1.0)建立反应流量。获得附接到火焰保持器的后缘的丙烷空气火焰。火焰片在火焰保持器附近是薄且光滑的,并且在剪切层的下游更厚且起皱。来自剪切层火焰片的反应区在最小流速附近朝横向中心平面传输,从而形成凹状区域。该区域表现出最大的湍流火焰速度,并且热膨胀增加了凹状火焰区域下游的流速。斜压扭矩是DWε/ Dt的最大来源。然而,由于热膨胀,流动的不均匀性得到了增强,并且可以作为(D(Wε)/ Dt的源和吸收点。将Φ减小到0.8会导致火焰几乎熄灭,但是火焰保持器内部的热点会重新点燃。火焰试图向下游传播,但冯卡曼街将下游区域的火焰熄灭,火焰几乎垂直于主流,但仍附着在火焰保持器的后缘,尾流收缩且热膨胀没有。在火焰的下游出现更长的时间。斜压和主要的Strouhal数(St)减小,阻力(C_D)增加并且拉伸成为(DWε/ Dt)的主要来源。在0 = 0.6时,火焰整体吹出并唤醒进一步收缩直到达到与未反应状态相同的轮廓为止,实际上,拉伸几乎是在接近尾声时造成(D(Wε)/ Dt)的唯一因素,C_D增大,St进一步减小,到达g值更接近于非反应条件。根据此数值研究,可以推断出,高度静态稳定的火焰保持器将具有以下特点:增加主St,斜压扭矩,剪切层长度和尾流长度,同时降低C_D和涡旋拉伸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号