首页> 外文会议>IEEE 17th International Symposium on High Performance Computer Architecture >Hardware/software techniques for DRAM thermal management
【24h】

Hardware/software techniques for DRAM thermal management

机译:DRAM热管理的硬件/软件技术

获取原文
获取外文期刊封面目录资料

摘要

The performance of the main memory is an important factor on overall system performance. To improve DRAM performance, designers have been increasing chip densities and the number of memory modules. However, these approaches increase power consumption and operating temperatures: temperatures in existing DRAM modules can rise to over 95°C. Another important property of DRAM temperature is the large variation in DRAM chip temperatures. In this paper, we present our analysis collected from measurements on a real system indicating that temperatures across DRAM chips can vary by over 10°C. This work aims to minimize this variation as well as the peak DRAM temperature. We first develop a thermal model to estimate the temperature of DRAM chips and validate this model against real temperature measurements. We then propose three hardware and software schemes to reduce peak temperatures. The first technique introduces a new cache line replacement policy that reduces the number of accesses to the overheating DRAM chips. The second technique utilizes a Memory Write Buffer to improve the access efficiency of the overheated chips. The third scheme intelligently allocates pages to relatively cooler ranks of the DIMM. Our experiments show that in a high performance memory system, our schemes reduce the peak DRAM chip temperature by as much as 8.39°C over 10 workloads (5.36°C on average). Our schemes also improve performance mainly due to reduction in thermal emergencies: for a baseline system with memory bandwidth throttling scheme, the IPC is improved by as much as 15.8% (4.1% on average).
机译:主存储器的性能是影响整体系统性能的重要因素。为了提高DRAM性能,设计人员一直在增加芯片密度和存储模块数量。但是,这些方法会增加功耗和工作温度:现有DRAM模块中的温度可能会上升到95°C以上。 DRAM温度的另一个重要属性是DRAM芯片温度的较大变化。在本文中,我们介绍了我们在真实系统上的测量中收集到的分析结果,这些结果表明DRAM芯片上的温度变化可能超过10°C。这项工作旨在最大程度地减少这种变化以及峰值DRAM温度。我们首先开发一个热模型来估计DRAM芯片的温度,然后针对实际温度测量结果验证该模型。然后,我们提出了三种硬件和软件方案来降低峰值温度。第一种技术引入了一种新的高速缓存行替换策略,该策略减少了对过热DRAM芯片的访问次数。第二种技术利用存储器写缓冲器来提高过热芯片的访问效率。第三种方案将页面智能地分配给DIMM的相对较低的等级。我们的实验表明,在高性能存储系统中,我们的方案在10个工作负载(平均5.36°C)下可使DRAM峰值芯片温度降低了8.39°C。我们的方案还主要由于减少了热紧急情况而提高了性能:对于具有内存带宽限制方案的基准系统,IPC最多提高了15.8%(平均为4.1%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号