首页> 外文会议>International symposium on structual engineering;ISSE 11th >HYSTERESIS BEHAVIOR COMPUTATION AND DYNAMIC DESIGN OF MAGNETORHEOLOGICAL DAMPERS UNDER SINUSOIDAL DISPLACEMENT EXCITATION
【24h】

HYSTERESIS BEHAVIOR COMPUTATION AND DYNAMIC DESIGN OF MAGNETORHEOLOGICAL DAMPERS UNDER SINUSOIDAL DISPLACEMENT EXCITATION

机译:正弦位移激励下磁流变阻尼器的磁滞行为计算与动力学设计

获取原文

摘要

Damping force-velocity hysteresis of a magnetorheological (MR) clamper under sinusoidal displacement excitation is not only a typical indication of its dynamic performance,but also the foundation upon which a practical control strategy is established. Although numerous parametric and nonparametric models are effectively in predicting the hysteresis,their accuracy strongly depends on specific experimental data. Furthermore,little design guiding information can be explored from these models. With compressibility of MR fluid considered,ordinary differential equations (ODEs) of a physical MR damper model is derived in this paper,and comparison between model results and experimental data of a literature shows good agreements. Then a corresponding lumped parameter model is developed,that is,a quasi-static MR model connected in series with a spring expressing compression of MR fluid. Moreover,the spring stiff expression is found to be equivalent to the "oil spring" in hydraulic technology. Decomposing a quasistatic MR model further to a friction element and a parallel-connected viscous element,these two basic elements in combination with a spring together fundamentally constitute a dynamic MR damper model. Consequently,for the first time (to authors' knowledge),a clear developing process of the hysteresis is presented with these three basic elements. As another main contribution of this paper,expression for calculating hysteresis width is derived by neglecting viscous element,and dynamic design method of MR dampers is proposed. Results show that a MR damper should be designed as short stroke and large effective area for the purpose of reducing the hysteresis.
机译:磁流变钳位器在正弦位移激励下的阻尼力-速度滞后现象不仅是其动态性能的典型指标,而且是建立实用控制策略的基础。尽管许多参数模型和非参数模型都可以有效地预测磁滞,但是其准确性在很大程度上取决于特定的实验数据。此外,可以从这些模型中探索少量的设计指导信息。考虑到MR流体的可压缩性,本文推导了物理MR阻尼器模型的常微分方程(ODE),并将模型结果与文献的实验数据进行了比较,两者吻合良好。然后建立相应的集总参数模型,即与表示MR流体压缩的弹簧串联的准静态MR模型。此外,发现弹簧刚度等同于液压技术中的“油弹簧”。将准静态MR模型进一步分解为摩擦元件和并联粘性元件,这两个基本元件与弹簧结合在一起,从根本上构成了动态MR阻尼器模型。因此,首次(据作者所知),利用这三个基本要素提出了一个清晰的磁滞发展过程。作为本文的另一主要贡献,通过忽略粘性元素推导了计算磁滞宽度的表达式,并提出了磁流变阻尼器的动态设计方法。结果表明,应将MR阻尼器设计为短行程和大有效面积,以减少磁滞现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号