首页> 外文会议>European Conference on Fracture >NOVEL AMINO ACID MODIFIED NANOCLAYS IN TISSUE ENGINEERING SCAFFLDS FOR IMPROVED MECHANICAL RESPONSES
【24h】

NOVEL AMINO ACID MODIFIED NANOCLAYS IN TISSUE ENGINEERING SCAFFLDS FOR IMPROVED MECHANICAL RESPONSES

机译:组织工程中的新型氨基酸改性纳米粘土改善了机械响应

获取原文

摘要

Design of scaffolds with optimal bioactivity, biocompatibility, biodegradability, porosity, and mechanical response are the important issues in tissue engineering. Human cells respond to surface chemistry and mechanics of the synthetic materials they grow on (scaffolds). In addition mechanics of cells is indicative of their growth, proliferation and adhesion on scaffolds. Earlier, in our prior work on polymer clay nanocomposites (PCNs), we have developed a unified theory on the mechanisms of mechanical property enhancement in these composites with addition of nanoscale clay particulates. This theory is based on an 'altered phase model' which is developed through extensive experimental and multiscale modeling (molecular dynamics to 3D finite element modeling) efforts. Here, we incorporate the results of the theory into design of new nanoclay based biopolymer hydroxyapatite nanocomposites for bone tissue engineering applications. Montmorillonite (MMT) clay was modified using unnatural amino acids as potentially new biocompatible modifiers. The specific choice of amino acids is based on both the antibacterial activity reported in literature and also our previous studies on role of chain length, functional groups etc of modifiers in influencing mechanical behavior in PCNs. Biocompatibility studies using cell culture experiments as well as mechanical behavior is evaluated for the biomedical PCNs. Also evaluated are the changes to molecular structure through FTIR spectroscopy. The increase in dooi spacing of modified clay compared to pure clay obtained from XRD experiments confirms successful intercalation of modifier. From cell culture experiments, osteoblast cells were found to grow and proliferate over the substrates. Here, we describe the use of novel modeling (through steered molecular dynamics) and experimental techniques (nanomechanical) to evaluate the role of engineered interfaces on mechanical response in the nanocomposite systems. Nodule formation indicative of osteogenic behavior, with hierarchical structure, mechanics and chemistry mimicking bone is presented. Overall, in this work, we demonstrate the use of evaluating nanoscale mechanics in nanocomposites for design of biomaterials for bone tissue engineering. In addition results of mechanical behavior of cell-scaffold structures as cells grow, proliferate and differentiate as scaffolds degrade is presented over the time scale of degradation of scaffold.
机译:具有最佳生物活性,生物相容性,生物降解性,孔隙率和机械响应的支架设计是组织工程中的重要问题。人细胞对它们所生长的合成材料(支架)的表面化学和力学产生反应。另外,细胞的力学机制指示它们在支架上的生长,增殖和粘附。早些时候,在我们先前关于聚合物粘土纳米复合材料(PCN)的工作中,我们已经开发了有关添加纳米级粘土颗粒的这些复合材料的机械性能增强机理的统一理论。该理论基于“改变相模型”,该模型是通过广泛的实验和多尺度建模(从分子动力学到3D有限元建模)而开发的。在这里,我们将理论的结果纳入了新的基于纳米粘土的生物聚合物羟基磷灰石纳米复合材料的设计,用于骨组织工程应用。蒙脱土(MMT)粘土使用非天然氨基酸作为潜在的新型生物相容性改性剂进行了改性。氨基酸的具体选择是基于文献中报道的抗菌活性以及我们之前对链长,修饰基团的官能团等在影响PCNs机械行为中的作用的研究。对于生物医学PCN,评估了使用细胞培养实验进行的生物相容性研究以及机械行为。还通过FTIR光谱评估了分子结构的变化。与从XRD实验获得的纯粘土相比,改性粘土的dooi间距增加证实了改性剂的成功嵌入。通过细胞培养实验,发现成骨细胞在基质上生长和增殖。在这里,我们描述了新颖的建模(通过操纵分子动力学)和实验技术(纳米力学)的使用,以评估工程复合材料在纳米复合材料系统中对机械响应的作用。结节的形成表明成骨行为,具有层次结构,力学和化学性质模仿骨骼。总体而言,在这项工作中,我们演示了在纳米复合材料中评估纳米尺度力学在设计用于骨组织工程的生物材料中的用途。另外,在支架降解的时间范围内,还显示了随着细胞生长,细胞增殖以及随着支架降解而分化的细胞支架结构的机械行为的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号