首页> 外文会议>2010 IEEE International Ultrasonics Symposium >“Design over temperature” — New approach to improve LSAW filters thermo stability
【24h】

“Design over temperature” — New approach to improve LSAW filters thermo stability

机译:“超温设计” —提高LSAW过滤器热稳定性的新方法

获取原文

摘要

Poor temperature properties of LSAW (Leaky Surface Acoustic Wave) devices are one of the principal problems of applying these devices in mobile communication systems. The TCF (temperature coefficient of frequency) of BAW (Bulk Acoustic Wave) filters, for example, are at least twice better compared to LSAW devices, so LSAW filters on 36–48 LiTaO3 should have much steeper transition bands for the same specification requirements. This causes increase of the LSAW filter IL (insertion loss) and cost due to bigger die size and inferior yield. The problem of improving temperature stability of SAW devices has been discussed in many papers for years. Many possible solutions were described in [1]. Currently, there are two main approaches to improve LSAW filters TCF [2], [3]. First one is based on deposition of a thin dielectric layer having positive TCF onto the filter working surface. The second approach uses bonding of a thin piezoelectric wafer onto a thermo stable carrier. Both methods can improve filter TCF by changing the effective thermo expansion coefficient and LSAW velocity. Unfortunately, both methods create new problems such as increased cost and deteriorating performance and/or reliability. In this work we propose a novel approach to improve TCF. It is based on changing the device impedance over the working temperature range and does not require a manufacturing technology change. We call this approach “Design over Temperature” (DOT). The idea is to design a filter with a special shape of impedance, improving the passband edges for varying temperatures (improving low edge under “cold” conditions and high edge-under “hot”). This new approach is based on two components: model parameters (COM (coupling-of-modes) model in our case) are characterized not only for ambient temperature ‘ta’ but for edges of the operational temperature range (tmin=−30°С and tm--ax=+85°С) too; — the design optimization process is organized for three sets of model parameters in parallel relative to full temperature range of the filter specification requirements. The goal of the optimization process is to improve the worst from three performances out of “cold”, “normal conditions” and “hot” and not just the room temperature performance for every specification requirement. First, we have extracted COM parameters for our fabrication process for three different temperatures: ta, tmin, tmax and described temperature dependencies for all of them. The large difference in TCF for left and right frequency response slopes is trivially demonstrated using this data. Second, we setup a single optimization process for three different sets of model parameters. We have designed an RX filter for PCS (and UMTS Band 2) application based on the proposed approach. This filter has better IL over working temperature range, steeper left transition band and twice better effective TCF than filters designed by conventional design process.
机译:LSAW(泄漏表面声波)设备的温度特性差是在移动通信系统中应用这些设备的主要问题之一。例如,BAW(体声波)滤波器的TCF(频率温度系数)至少比LSAW器件好两倍,因此在36–48 LiTaO 3 上的LSAW滤波器应陡峭得多相同规格要求的过渡带。由于较大的芯片尺寸和较低的良率,这会导致LSAW滤波器IL的增加(插入损耗)和成本。多年来,在许多论文中都讨论了提高声表面波器件的温度稳定性的问题。在[1]中描述了许多可能的解决方案。当前,有两种主要方法可以改善LSAW滤波器TCF [2],[3]。第一个是基于将具有正TCF的薄介电层沉积到滤波器工作表面上。第二种方法是将薄的压电晶片粘合到热稳定的载体上。两种方法都可以通过更改有效的热膨胀系数和LSAW速度来改善滤波器的TCF。不幸的是,两种方法都产生新的问题,例如成本增加以及性能和/或可靠性下降。在这项工作中,我们提出了一种改进TCF的新颖方法。它基于在工作温度范围内更改设备阻抗的原理,不需要更改制造技术。我们称这种方法为“温度范围内的设计”(DOT)。这个想法是设计一种具有特殊阻抗形状的滤波器,以改善通带边缘在不同温度下的性能(在“冷”条件下改善低边沿,在“热”条件下改善高边沿)。这种新方法基于两个组成部分:模型参数(在我们的情况下为COM(模式耦合)模型)不仅针对环境温度“ ta”,而且针对工作温度范围的边缘(tmin = −30°С)和tm- -- ax = + 85°С) —针对过滤器规格要求的整个温度范围,针对三组模型参数并行组织设计优化过程。优化过程的目标是从“冷”,“正常条件”和“热”三个性能中改善最差的性能,而不仅仅是针对每个规格要求的室温性能。首先,我们为三种不同温度的制造工艺提取了COM参数:t a ,t min ,t max ,并描述了温度依赖性他们都是。使用此数据可轻松证明左,右频率响应斜率的TCF差异很大。其次,我们为三组不同的模型参数设置了单个优化过程。我们基于提出的方法为PCS(和UMTS频段2)应用设计了RX滤波器。与传统设计工艺设计的滤波器相比,该滤波器在工作温度范围内具有更好的IL,更陡峭的左跃迁带和有效TCF两倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号