首页> 外文会议>AIChE annual meeting >Hybrid Membrane-Cryogenic Distillation Air Separation Processes for Oxygen Production
【24h】

Hybrid Membrane-Cryogenic Distillation Air Separation Processes for Oxygen Production

机译:混合膜-低温蒸馏空气分离法制氧

获取原文

摘要

Hybrid separation processes are of commercial interest for many applications. Airseparation is a prime target because cryogenic distillation, adsorption, and membranes are usedcommercially, and increasing demand for oxygen for alternative energy applications willincrease construction of new plants. Hybrid adsorption-cryogenic distillation processes havebeen developed and potentially have lower operating and capital costs than their conventionalcounterparts.1In this paper, a novel membrane-cryogenic distillation air separation process for oxygenproduction is developed. This process uses a membrane gas permeator to increase the oxygenconcentration of the feed to 23.5 % or less before the main air compressor of the cryogenicdistillation plant (Figure 1). The reason for a 23.5% limit on oxygen is that above thisconcentration more expensive materials of construction are required. Although 23.5 % is a lowconcentration, it represents a more than 11 % reduction in gas flow rate. This reduction in flowrate results in reduced power requirements for compression and reduced sizes and costs of thedownstream equipment. For a basis of 1.0 m3 air/s, the power requirement to compress air from1.0 atm. to a typical distillation column operating pressure of 6.0 atm. is 322.7 kW. For the sameamount of oxygen product the power requirement to compress air that has been enriched to 23.5% oxygen from 1.0 to 6.0 atm. is 287.0 KW. The difference, 35.7 kW, is the maximumpower that can be used in the membrane permeator to have the membrane-cryogenic distillationsystem not require more energy. The hybrid approach can be applied either to new designs, orfor retrofitting and debottlenecking existing plants.Achieving the 23.5% concentration with very low energy and reasonable membrane areasis surprisingly difficult with currently available membranes. To reduce the permeateconcentration to 23.5% oxygen either a very high cut or a bypass stream is required. Very highcuts are not economical because the membrane area becomes too large. The use of a bypassstream and power recovery from the retentate proved to be the best configuration (Figure 2).Abbreviated results for this configuration are given in Table 1. Note that all of the membranesystems have an optimum cut which minimizes the power. Power is also reduced by operating atas low a feed pressure as possible. On the other hand, membrane area is reduced by operating ata low cut with a higher feed pressure.High flux, low selectivity membranes (e.g., silicone PDMS membrane in Table 1)resulted in low membrane areas, but the power requirements were greater than the savings fromreduced gas flow rates. Highly selective, low flux membranes (e.g., polystyrene membranes)had low power but huge areas (not shown in Table 1). The TMHFPSF composite membrane(Table 1) had reasonable power (net power < 35.7 kW), but based on capital cost estimate didnot appear to be economical. A combination of high flux and high selectivity appears to benecessary to be economical for this application. Carbon sieve membranes (Table 1) have acombination of high flux and high selectivity that appears to be viable if they can be made withthin active layers and sell for a reasonable cost.
机译:混合分离方法对许多应用具有商业意义。空气 分离是主要目标,因为使用了低温蒸馏,吸附和膜分离 在商业上,替代能源应用对氧气的需求将不断增加 增加新工厂的建设。混合吸附-低温蒸馏工艺具有 已开发,与传统技术相比,其运营和资金成本可能更低 对应物1 本文提出了一种用于氧气的膜式低温蒸馏空气分离新工艺 生产开发。该过程使用膜式气体渗透器来增加氧气 在低温主空气压缩机之前,进料浓度达到23.5%或更低 蒸馏装置(图1)。限制氧气含量为23.5%的原因是高于此值 集中需要更昂贵的建筑材料。虽然23.5%是低 浓度,表示气体流速降低了11%以上。流量减少 压缩率降低了压缩所需的功率,并减小了压缩器的尺寸和成本 下游设备。以1.0 m3的空气/ s为基准,压缩空气所需的功率 1.0大气压到典型的蒸馏塔操作压力为6.0 atm。是322.7千瓦。对于相同的 氧气产品的量压缩空气所需的功率,该空气已从1.0到6.0 atm富集了23.5%的氧气。是287.0 KW。最大的差异是35.7 kW 可以在膜渗透器中使用以进行膜低温蒸馏的功率 系统不需要更多的能量。混合方法既可以应用于新设计,也可以应用于 用于改造和消除现有工厂的瓶颈。 以极低的能量和合理的膜面积实现23.5%的浓度 用目前可用的膜难以解决。减少渗透 浓度要达到23.5%的氧气,需要非常高的馏分或旁路流。很高 切口不经济,因为膜面积太大。使用旁路 从渗余物中回收流和功率的方法被证明是最佳配置(图2)。 表1给出了该配置的简短结果。请注意,所有膜 系统具有最佳切割效果,可最大程度地降低功率。通过在 尽可能低的进料压力。另一方面,通过在 进料压力较高的低压差。 高通量,低选择性膜(例如表1中的有机硅PDMS膜) 导致膜面积低,但是功率要求大于节省的功率 降低气体流速。高选择性,低通量膜(例如,聚苯乙烯膜) 功率低但面积大(表1中未显示)。 TMHFPSF复合膜 (表1)具有合理的功率(净功率<35.7 kW),但根据资本成本估算, 似乎不经济。高通量和高选择性的结合似乎是 对于此应用而言,必须是经济的。碳筛膜(表1)具有 高通量和高选择性的组合,如果可以通过以下方法制得,则似乎是可行的 薄的活性层,并以合理的价格出售。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号