首页> 外文会议>AIChE annual meeting >A Coupled Control-Volume Finite Element Geomechanical Model for Discrete-Fracture Reservoir Simulators
【24h】

A Coupled Control-Volume Finite Element Geomechanical Model for Discrete-Fracture Reservoir Simulators

机译:离散裂缝油藏模拟的耦合控制体积有限元地质力学模型

获取原文

摘要

The effects of geomechanical parameters on reservoir properties are usually not consideredin conventional reservoir simulation.This may have ramifications in reservoirs wherecompaction drive is essential or for reservoirs where fracture flow is dominant and is stronglypressure sensitive. Discrete-fracture network representations of a fractured reservoir are examplesof the latter; geomechanical effects are expected to have significant impact on productionperformance. In this paper, we systematically explore a number of different methodologies for incorporatingstress dependence into reservoir properties. A finite element, geomechanical modelbased on force balance principles is interfaced with a control-volume finite element, discretefracturereservoir simulator. The geomechanical module that has been developed is able toconsider any standard thermo-poroelastic constitutive relationship or stress-strain correlation,and accounts for both fracture and matrix constitutive properties. The pressure and saturationinformation from the flow model are communicated to the geomechanical model and the matrix/fracture properties are updated. Several different approaches for coupling are demonstratedand compared; from explicit exchange to communication between modules. Examples from fracturedtight gas formations are used to demonstrate the model and for assessing the importanceand effectiveness of each type of coupling. It is shown that the relevant geomechanical informationis incorporated into the reservoir model in a computationally efficient manner by allowingtimely communication, not necessarily after every time step. The impact of aperture changesof the fractures is shown to be considerable - resulting in significant local changes in effectivepermeability and connectivity during production. The influence of fracture aperture change, associatedwith the geomechanical module on capillarity and other rock-fluid phenomena lead to anumber of interesting observations concerning water block, fluid trapping, producible rates andultimate production. It is significant in dealing with dynamic changes in fracture networks infractured reservoirs.
机译:通常不考虑地质力学参数对储层性质的影响 在常规油藏模拟中可能会对油藏产生影响 压实驱动是必不可少的,或者对于裂缝流占主导地位且强烈的储层而言 压力敏感。裂缝储层的离散裂缝网络表示法就是示例 后者;预期地质力学效应将对生产产生重大影响 表现。在本文中,我们系统地探索了许多不同的方法来整合 应力对储层物性的依赖性。有限元地质力学模型 基于力平衡原理的系统与控制量有限元离散裂缝相接 油藏模拟器。已开发的地质力学模块能够 考虑任何标准的热-多孔弹性本构关系或应力-应变相关性, 并考虑了断裂和基体的本构特性。压力和饱和度 来自流动模型的信息被传递到地质力学模型和矩阵/ 断裂特性已更新。展示了几种不同的耦合方法 并进行比较;从显式交换到模块之间的通信。断裂的例子 致密气层被用来证明该模型并评估其重要性 和每种类型的耦合的有效性。结果表明,相关的地质力学信息 通过允许以下操作以计算有效的方式将其合并到储层模型中: 及时的沟通,不一定每次都经过。光圈变化的影响 骨折的数量被证明是相当大的-导致有效部位发生了明显的局部变化 生产过程中的渗透性和连通性。裂缝孔径变化的影响,相关 用关于毛细作用的岩石力学模块和其他岩石流体现象导致了 关于水阻滞,流体截留,可生产的速率和 最终生产。对于处理裂缝网络中的动态变化具有重要意义。 裂缝性储层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号