首页> 外文会议>Book of abstracts of the 50th Israel annual conference on aerospace sciences >Theoretical Limits of Scaling-Down Internal Combustion Engines
【24h】

Theoretical Limits of Scaling-Down Internal Combustion Engines

机译:缩小内燃机的理论极限

获取原文

摘要

Small-scale energy conversion devices are being developed for a variety of applications; these includepropulsion units for MAV (micro aerial vehicles). The high specific energy of hydrocarbon and hydrogenfuels, as compared to other energy storing means, like, batteries, elastic elements, flywheels, pneumatics,and fuel cells, appears to be an important advantage, and favors the ICE as a candidate. In addition, thespecific power (power per mass of unit) of the ICE seems to be much higher than that of other candidates.However, micro ICE engines are not simply smaller versions of full-size engines. Physical processes suchas combustion, and gas exchange, are performed in regimes different from those occur in full-size engines.Consequently, engine design principles are different at a fundamental level, and have to be re-consideredbefore they are applied to micro-engines. When a Spark-Ignition (SI) cycle is considered, part of theenergy that is released during combustion is used to heat-up the mixture in the quenching volume, andtherefore the flame-zone temperature is lower and in some cases can theoretically fall below the selfsustainedcombustion temperature. The flame quenching thus seems to limit the minimum dimensions of aSI engine. This limit becomes irrelevant when a Homogeneous-Charge Compression-Ignition (HCCI)cycle is considered. In this case friction losses and charge leakage through the cylinder-piston gap becomedominant, constrain the engine size, and impose minimum engine speed limits.In the present work a phenomenological model has been developed to consider the relevant procuressesinside the cylinder of a Homogeneous-Charge Compression-Ignition (HCCI) engine. An approximatedanalytical solution is proposed to yield the lower possible limits of scaling-down HCCI cycle engines. Thepresent work presents simple algebraic equation that shows the inter-relationships between the pertinentparameters, and constitutes the lower possible miniaturization limits of IC engines.
机译:正在为各种应用开发小型能量转换设备。这些包括 MAV(微型飞行器)的推进装置。碳氢化合物和氢的高比能 与其他能量存储装置(例如电池,弹性元件,飞轮,气动装置, 燃料电池,这似乎是一个重要的优势,并且使ICE成为候选者。除此之外 ICE的比功率(每单位质量的功率)似乎远高于其他候选功率。 但是,微型ICE引擎不只是全尺寸引擎的较小版本。物理过程如 燃烧和气体交换是在与全尺寸发动机不同的方式下进行的。 因此,发动机设计原理在根本上是不同的,必须重新考虑 在将它们应用于微型引擎之前。考虑火花点火(SI)周期时, 燃烧过程中释放的能量用于加热淬火容积中的混合物,并且 因此火焰区域的温度较低,在某些情况下理论上可以降至自持温度以下 燃烧温度。因此,火焰淬火似乎限制了铸件的最小尺寸。 SI引擎。当均质压缩压缩点火(HCCI)时,此限制变得无关紧要 考虑周期。在这种情况下,摩擦损失和电荷通过气缸-活塞间隙的泄漏就变成了 占主导地位,限制发动机尺寸,并施加最低发动机转速限制。 在目前的工作中,已经开发出一种现象学模型来考虑相关的过程 均质压燃(HCCI)发动机的气缸内。一个近似的 提出了一种解析解决方案,以降低HCCI循环发动机的比例。这 本工作提出了一个简单的代数方程,该方程显示了相关的相互关系 参数,并构成了IC发动机的可能的更低的小型化极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号