首页> 外文会议>Quantum, Nano and Micro Technologies, 2010. ICQNM '10 >Aggregates of Synthetic Microscale Nanorobots versus Swarms of Computer-Controlled Flagellated Bacterial Robots for Target Therapies through the Human Vascular Network
【24h】

Aggregates of Synthetic Microscale Nanorobots versus Swarms of Computer-Controlled Flagellated Bacterial Robots for Target Therapies through the Human Vascular Network

机译:合成的微型纳米机器人的聚集体与通过人类血管网络进行靶标治疗的计算机控制的细菌化细菌机器人群的比较

获取原文

摘要

The field of medical nanorobotics exploits nanometer-scale components and phenomena to enable new or at least to enhance existing medical diagnostic and interventional procedures. The best route for such miniature robots to access the various regions inside the human body is certainly the vascular network which is constituted of nearly 100,000 km of blood vessels. The variations in blood vessels diameters from a few millimeters in the arteries, down to ~4 ¿m in the capillaries with respective important variations in blood flow velocities, lead to significant challenges in the development of a robot relying on a singe type of propulsion method while being trackable in the human body. This tracking feasibility in a living body was realized experimentally by integrating magnetic nanoparticles (MNP) capable of creating a net field inhomogeneity that could be detected by magnetic resonance imaging (MRI). In such an environment, dipole-dipole interaction between synthetic microscale nanorobots encapsulating MNP can be used to achieve higher magnetophoretic velocities when subjected to a 3D magnetic gradient force generated by an upgraded MRI platform to allow such aggregated nanorobots to travel in the blood circulatory network. Here, such approach is evaluated against the flagellar propelling thrust force exceeding 4 pN provided by each MC-1 MRI-trackable magnetotactic cells capable of swimming as swarms under computer control in blood vessels. Such artificial and natural approaches are compared with the advantages of each in targeting regions deep in the human body.
机译:医疗纳米机器人领域利用纳米尺度的成分和现象来实现新的或至少增强现有的医学诊断和介入程序。这种微型机器人进入人体内部各个区域的最佳途径当然是血管网络,该网络由近100,000公里的血管组成。血管直径的变化从动脉中的几毫米到毛细血管中的〜4μm,以及各自重要的血流速度变化,在依赖于单一类型的机器人的开发中带来了重大挑战在人体中可追踪的推进方法。通过整合磁性纳米颗粒(MNP)能够在活体内实现这种跟踪可行性,磁性纳米颗粒(MNP)能够产生可以通过磁共振成像(MRI)检测到的净场不均匀性。在这样的环境中,当受到升级的MRI平台产生的3D磁梯度力的作用时,封装MNP的合成微型纳米机器人之间的偶极-偶极相互作用可用于实现更高的磁泳速度,以允许此类聚集的纳米机器人在血液循环网络中传播。在这里,这种方法是针对每个MC-1 MRI追踪的趋磁趋化细胞提供的鞭毛推进推力超过4 pN的,这些趋化推力细胞能够在计算机的控制下成群结队地游泳。将这种人工和自然方法与每种方法在针对人体深部区域的优势方面进行了比较。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号