首页> 外文会议>Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture >Characterizing and mitigating the impact of process variations on phase change based memory systems
【24h】

Characterizing and mitigating the impact of process variations on phase change based memory systems

机译:表征并减轻工艺变化对基于相变的存储系统的影响

获取原文

摘要

Dynamic Random Access Memory (DRAM) has been used in main memory design for decades. However, DRAM consumes an increasing power budget and faces difficulties in scaling down for small feature size CMOS processing technologies. Compared to conventional DRAM, emerging phase change random access memory (PRAM) demonstrates superior power efficiency and processing scalability as VLSI technologies and integration density continue to advance. Nevertheless, using nano-scale fabrication technologies will unavoidably introduce design parameter variability in the manufacturing stage. In the past, the impact of process variation (PV) on conventional transistor-based storage cells and combinational logic has been studied extensively. However, the implication of PV on non-volatile memory design using emerging phase change techniques has not been well understood. In this paper, we take the first step toward characterizing the effect of process variation on PRAM and explore PV-aware design techniques. We show that process variation increases the PRAM programming power by 96% and degrades PRAM endurance by 50X. Our proposed circuit and two microarchtiecture techniques with system-level support reduce PRAM power by 44%, 59% and 57% and improve PRAM endurance by 27X, 277X and 268X, relative to PV-affected PRAM design. Moreover, we show that the synergy of the proposed cross-layer approaches, which achieve an average 63% power savings and 13050X endurance improvement over the conventional case, provide an attractive design solution to mitigate the deleterious impact of PV for non-volatile memory in the upcoming nano-scale processing technology era.
机译:动态随机存取存储器(DRAM)在主存储器设计中已经使用了数十年。然而,DRAM消耗越来越多的功率预算,并且在缩小尺寸以用于小特征尺寸的CMOS处理技术方面面临困难。与传统的DRAM相比,随着VLSI技术和集成密度的不断提高,新兴的相变随机存取存储器(PRAM)表现出出众的电源效率和处理可扩展性。然而,使用纳米级制造技术将不可避免地在制造阶段引入设计参数的可变性。过去,过程变化(PV)对常规基于晶体管的存储单元和组合逻辑的影响已得到广泛研究。但是,PV对使用新兴相变技术的非易失性存储器设计的影响尚未得到很好的理解。在本文中,我们朝着表征工艺变化对PRAM的影响迈出了第一步,并探索了可感知PV的设计技术。我们显示出工艺变化会使PRAM的编程能力提高96%,并使PRAM的耐用性降低50倍。与受PV影响的PRAM设计相比,我们提出的电路和两种具有系统级支持的微体系结构技术可将PRAM功耗降低44%,59%和57%,并将PRAM耐久性提高27倍,277X和268倍。而且,我们表明,所提出的跨层方法的协同作用(与传统情况相比,平均节省了63%的功率,并提高了13050倍的耐久性),提供了一种有吸引力的设计解决方案,可减轻PV对非易失性存储器的有害影响。即将到来的纳米级加工技术时代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号