首页> 外文会议>INMM annual meeting >Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry
【24h】

Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry

机译:激光烧蚀-双可调二极管激光吸收光谱法检测同位素富集

获取原文
获取外文期刊封面目录资料

摘要

The global expansion of nuclear power is motivating the development of new safeguardstechnology to mitigate proliferation risks arising from the growing uranium enrichment industry.Current enrichment monitoring instruments are subject to information barriers that provide onlyyeso detection of highly enriched uranium (HEU) production. More accurate accountancymeasurements are restricted to gamma and weight measurements taken in the cylinder storage yard.The in-facility instruments, such as Continuous Enrichment Monitoring system (CEMO) andCascade Header Enrichment Monitor (CHEM), face a host of significant challenges in practicaloperation and are not uniformly used in all facilities under safeguards. Offsite analysis ofenvironmental and cylinder content samples have much higher effectiveness, but this approachrequires onsite sampling, shipping, and time-consuming laboratory analysis and reporting.Moreover, access to the cascade hall for environmental sample collection is limited via the LimitedFrequency Unannounced Access (LFUA) inspection modality for the purpose of protectingsensitive nuclear technology information. Given that large modern centrifuge cascades can quicklyproduce a significant quantity (SQ) of HEU in various misuse scenarios, these limitations inverification raise questions regarding timely detection of facility misuse.The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguardsinstrument concept, combining continuous aerosol particulate collection with uranium isotopeassay, to provide timely analysis of enrichment levels within low enriched uranium (LEU) facilities.This approach is based on laser vaporization of aerosol particulate samples, followed by wavelengthtuned laser diode spectroscopy, to characterize the uranium isotopic ratio by subtle differences inatomic absorption wavelengths. Environmental sampling media from an integrated aerosol collectoris automatically introduced into a small, reduced pressure chamber, where a focused pulsed laservaporizes a 10 to 20-onm sample diameter. The ejected plasma forms a plume of atomic vapor.Tunable diode lasers are directed through the plume and each isotope is detected by monitoringabsorbance signals on a shot-to-shot basis. The media is translated by a micron resolution scanningsystem to fully characterize the sample surface. Single-shot detection sensitivity approaching thefemtogram range and relative isotope ratio uncertainty better than 10% has been demonstrated withsurrogate materials. In this paper we present measurement results on samples containingbackground materials (e.g., dust, minerals, soils) laced with micron-sized target particles havingisotopic ratios ranging from 1 to 50%.
机译:核电的全球扩张正在推动新保障措施的发展 减轻铀浓缩行业不断发展带来的扩散风险的技术。 当前的浓缩监测工具受制于仅提供信息的信息障碍。 是/否检测高浓缩铀(HEU)生产。更准确的会计 测量仅限于在气瓶存放场中进行的伽玛和重量测量。 设施内的工具,例如连续浓缩监测系统(CEMO)和 Cascade标头浓缩监控器(CHEM)在实际操作中面临许多重大挑战 操作,并非在保障措施下在所有设施中统一使用。异地分析 环境和气瓶含量样品的有效性更高,但是这种方法 需要现场采样,运输以及耗时的实验室分析和报告。 此外,通过Limited限制进入级联大厅收集环境样品 频率未通知接入(LFUA)检查方式,旨在保护 敏感的核技术信息。鉴于大型现代离心机级联可以快速 在各种滥用情况下会产生大量的HEU,这些限制在 验证提出了有关及时发现设施滥用的问题。 太平洋西北国家实验室(PNNL)正在开发无人看管的保障措施 仪器概念,将连续的气溶胶微粒收集与铀同位素结合起来 检测,以便及时分析低浓缩铀(LEU)设施内的富集水平。 该方法基于气溶胶颗粒样品的激光汽化,然后是波长 调谐激光二极管光谱,通过细微的差异来表征铀同位素比 原子吸收波长。来自集成式气溶胶收集器的环境采样介质 被自动引入一个小的减压室中,在该室中聚焦脉冲激光 蒸发直径为10至20微米的样品。喷射的等离子体形成原子蒸气羽流。 可调二极管激光器直接穿过烟羽,通过监测可以检测到每个同位素 逐个吸光度信号。介质通过微米分辨率扫描进行翻译 系统以充分表征样品表面。单次检测灵敏度接近 柱状图的范围和相对同位素比不确定度均优于10% 替代材料。在本文中,我们介绍了包含以下成分的样品的测量结果 背景材料(例如灰尘,矿物质,土壤)与微米级目标颗粒绑在一起, 同位素比率从1%到50%不等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号