首页> 外文会议>European rotorcraft forum >IMPLEMENTATION OF AERO-ELASTIC CAPABILITIES IN A LBM FLOW SOLVER: APPLICATION TO A LOW-REYNOLDS ROTOR FOR MICRO-AIR VEHICLES
【24h】

IMPLEMENTATION OF AERO-ELASTIC CAPABILITIES IN A LBM FLOW SOLVER: APPLICATION TO A LOW-REYNOLDS ROTOR FOR MICRO-AIR VEHICLES

机译:在LBM流动求解器中实现航空弹性能力:用于微空气车辆的低雷诺转子的应用

获取原文
获取外文期刊封面目录资料

摘要

Micro air vehicles (MAVs) are used both for civil (rescue missions) and military (surveillance, recognition) applications. However the aerodynamic performance of the propeller is known to be lower than for classical large rotors, due to leading edge vortex occurring at low Reynolds number flows. Such rotors can also exhibits a flexible behaviour due to the material used to build the blades, making the prediction of aerodynamic performance challenging for numerical flow solvers. A potential way to improve the rotor performance is also to take advantage of the flow unsteadiness, by imposing an unsteady forced motion, like a periodic variation of the rotor pitch. There is thus a need to develop aero-elastic capabilities in numerical flow solvers, which is the main objective of this paper. The method relies on the implementation of Fluid-Structure Interaction (FSI) capabilities in a Lattice-Boltzmann flow solver, in order to take advantage of the flexibility allowed by the immersed boundary approach. FSI capabilities are implemented in a monolithic fashion, using generalised coordinates to represent the blade as a flexible beam. Two sets of simulations are performed: a) with a forced motion and b) by coupling the flow with the equation of the dynamics. Results show that a forced motion has a good potential to increase the rotor thrust but significant improvements should yet to be done to reduce the over-power consumed by the forced motion. While dynamic flapping has a negligible influence on the flow, dynamic pitching has the potential to moderately modify the pressure distribution at the trailing edge. However its impact on the rotor performance is weak (less than 0.5% on the thrust).
机译:微型航空公司(MAVS)用于民事(救援任务)和军事(监测,识别)应用。然而,由于在低雷诺数流动发生的前沿涡流,螺旋桨的空气动力学性能低于经典大转子的空气动力学性能。由于用于构建叶片的材料,这种转子也可以表现出灵活的行为,使得对数值流动求解器的空气动力学性能挑战预测。通过施加不稳定的强制运动,改善转子性能的潜在方法也利用流动不稳定,如转子间距的周期性变化。因此,需要在数值流动溶剂中开发航空弹性能力,这是本文的主要目的。该方法依赖于在格子-Boltzmann流动求解器中实施流体 - 结构相互作用(FSI)能力,以利用浸没边界方法允许的灵活性。 FSI能力以单片方式实现,使用广义坐标来表示叶片作为柔性梁。通过将流量与动态的等式耦合,执行两组模拟:a),强制运动和b)。结果表明,强制运动具有良好的潜力,可以增加转子推力,但尚未完成显着的改进,以减少强制运动所消耗的过量。虽然动态挥动对流量的影响可忽略不计,但动态俯仰具有适度地修改后缘处的压力分布的可能性。然而,它对转子性能的影响弱(推力小于0.5%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号