首页> 外文会议>Eco-materials processing and design X >Fracture Behavior of Plasma-sprayed Thermal Barrier Coatings with Different Bond Coats upon Cyclic Thermal Exposure
【24h】

Fracture Behavior of Plasma-sprayed Thermal Barrier Coatings with Different Bond Coats upon Cyclic Thermal Exposure

机译:循环热暴露下具有不同粘结层的等离子喷涂热障涂层的断裂行为

获取原文

摘要

The effects of bond coat nature in thermal barrier coating (TBC) systems on the delamination or fracture behavior of the TBCs with different bond coats prepared using two different processes-air plasma spray (APS) and high velocity oxyfuel (HVOF)-were investigated by cyclic thermal fatigue tests. The TBCs with the HVOF bond coat were delaminated or fractured after 3-6 cycles, whereas those with the APS bond coat were delaminated after 10 cycles or show a sound condition. These results indicate that the TBC system with the APS bond coat has better thermal durability than the system with the HVOF bond coat under long-term cyclic thermal exposure. The hardness values of the TBCs (top coats) in both systems are dependent on applied loads, irrespective of the hardness of the bond coats and the substrate. The values are not responded to the bond coat nature or the exposure time. Thermally grown oxide (TGO) layers in both cases consist of two regions with the inner TGO layer containing only Al_2O_3 and the outer TGO layer of mixed-oxide zone containing Ni, Co, Cr, Al in Al_2O_3 matrix. The outer TGO layer has a more irregular shape than the inner TGO layer, and there are many pores within the outer layer. At failure, the TGO thickness of the TBC system with the HVOF bond coat is 9-13 μm, depending on the total exposed time, and that of the TBC system with the APS bond coat is about 20 μm. The both TBC systems show the diffusion layer on the side of substrate in the interface between the bond coat and the substrate. The relationship between the delamination or fracture behavior and the bond coat nature has been discussed, based on the elemental analysis and microstructural evaluation.
机译:通过热喷涂(TBC)系统中的粘结层性质对采用两种不同工艺(空气等离子体喷涂(APS)和高速含氧燃料(HVOF))制备的具有不同粘结层的TBC的分层或断裂行为的影响进行了研究。循环热疲劳测试。具有HVOF粘结层的TBC在3-6个循环后分层或断裂,而具有APS粘结层的TBC在10个循环后分层或呈现良好状态。这些结果表明,在长期循环热暴露下,具有APS粘结涂层的TBC系统比具有HVOF粘结涂层的系统具有更好的热耐久性。在两种体系中,TBC(面漆)的硬度值均取决于所施加的载荷,而与粘结层和基材的硬度无关。该值不响应粘结涂层的性质或暴露时间。两种情况下的热生长氧化物(TGO)层均由两个区域组成,内部TGO层仅包含Al_2O_3,而外部TGO层包含Al_2O_3基体中的Ni,Co,Cr,Al的混合氧化物区。外部TGO层具有比内部TGO层更不规则的形状,并且在外部层内有许多孔。失效时,具有HVOF粘结涂层的TBC系统的TGO厚度为9-13μm,具体取决于总暴露时间,而具有APS粘结涂层的TBC系统的TGO厚度约为20μm。两种TBC系统均在粘结涂层和基材之间的界面中在基材侧面上显示了扩散层。基于元素分析和微观结构评估,讨论了脱层或断裂行为与粘结层性质之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号