首页> 外文会议>AHS International annual forum >UNDERSTANDING THE PECULIARITIES OF ROTORCRAFT - PILOT - COUPLINGS
【24h】

UNDERSTANDING THE PECULIARITIES OF ROTORCRAFT - PILOT - COUPLINGS

机译:了解转轮-先导-联轴器的特性

获取原文

摘要

Rotorcraft pilots are familiar with potential instabilities or with annoying limit cycle oscillations that arise from the effort to control aircraft with high response bandwidth actuation systems. The destabilization of a vehicle due to active participation of the pilot in the control loop corresponds to the so-called 'rotorcraft-pilot coupling1 phenomenon (RPC). RPCs, in the past frequently called 'pilot induced/assisted oscillations' (PIO/PAO), can be problematic for the safety of the aircraft. Generally, it is accepted that RPCs are much more difficult to predict and suppress than aircraft-pilot-couplings (APCs); APCs have been mainly associated with the lower frequency spectrum of the flight modes, while for modern helicopters RPCs can also be associated with the higher frequency spectrum of structural dynamic and rotor aeroelastic modes. The goal of the present paper is to present results of an analytic investigation to provide an improved understanding of the peculiar physical mechanisms through which the pilot excites the rotor regressive flap and lag modes in an RPC event, and how these modes can couple through the flight control system (FCS) to the airframe body roll mode. It will be demonstrated that for a hovering helicopter the FCS is primary responsible for transferring energy from the roll to the flapping motion but usually no energy is transferred back from the flapping to the roll motion. In the case of an RPC induced by a time delay between the pilot input and the aircraft response it appears that the time delay has not much influence on the limits of the attitude controller, however, there is energy transferred back from the flapping to the roll motion. The roll mode tends to couple primarily with the flapping motion which in turn couples with the lag motion and can contribute to the destabilizing flap-roll coupling in an RPC event. For the FCS or rotor system designer, the paper will derive stability criteria and boundaries for the roll attitude feedback/roll rate feedback gains for a hovering helicopter as a function of aircraft parameters.
机译:旋翼飞机的飞行员熟悉潜在的不稳定性或烦人的极限循环振荡,这种振荡是由于努力控制具有高响应带宽的致动系统的飞机而引起的。由于飞行员主动参与控制回路而导致的车辆失稳对应于所谓的“旋翼飞机-驾驶员耦合现象”(RPC)。 RPC在过去通常被称为“飞行员诱发/辅助振荡”(PIO / PAO),可能会对飞机的安全性造成问题。通常,人们普遍认为,RPC的预测和抑制要比飞机驾驶员联轴器(APC)困难得多。 APC主要与飞行模式的较低频谱相关,而对于现代直升机,RPC也可能与结构动态和旋翼气动弹性模式的较高频谱相关。本文的目的是提出分析性研究的结果,以更好地理解飞行员在RPC事件中通过其激发旋翼回归襟翼和滞后模式的特殊物理机制,以及这些模式如何在飞行过程中相互耦合。控制系统(FCS)转换为机身侧倾模式。将会证明,对于悬停的直升机,FCS主要负责将能量从侧倾传递到摆动运动,但通常没有能量从侧倾传递回到侧倾运动。在由飞行员输入和飞机响应之间的时间延迟引起的RPC的情况下,时间延迟似乎对姿态控制器的极限没有太大影响,但是,能量从襟翼传回了侧倾运动。侧倾模式倾向于主要与拍打运动耦合,而拍打运动又与滞后运动耦合,并且可能在RPC事件中导致不稳定的拍打-侧翻耦合。对于FCS或旋翼系统设计人员,本文将根据飞机参数得出悬停直升机的侧倾姿态反馈/侧倾速率反馈增益的稳定性标准和边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号