首页> 外文会议>ASME turbo expo >TEMPORAL STRUCTURE OF THE BOUNDARY LAYER IN LOW REYNOLDS NUMBER, LOW PRESSURE TURBINE PROFILES
【24h】

TEMPORAL STRUCTURE OF THE BOUNDARY LAYER IN LOW REYNOLDS NUMBER, LOW PRESSURE TURBINE PROFILES

机译:低雷诺数,低压涡轮轮廓的边界层的时间结构

获取原文

摘要

Viscous effects in the suction side of low pressure turbines account for about 1/2 of the total turbine losses. Modern design practices simultaneously include decreasing the profiles' Reynolds number and increasing their aerodynamic load, thereby compromising the suction side boundary layer flow. The objective of the present investigation is to experimentally elucidate the spatial and temporal structure of the suction side boundary layer in the low Reynolds number regime. Under steady state approaching flow conditions, the boundary layer undergoes laminar separation shortly after the external flow velocity peak is reached. The separation produces a low kinetic energy, uniform pressure fluid region. Between this and the external flow, a laminar shear layer develops. The laminar shear layer undergoes a sudden, non linear instability process when its distance to the suction side wall is compatible with the shear layer most unstable scale. This instability promotes the formation of large scale vortices that reattach the flow to the suction side wall. When the approaching flow includes moving wakes that simulate the previous turbine stage, the above description is modified. The laminar shear layer undergoes a global instability triggered by the passing wakes' perturbation field. Later on the viscous layer reattaches as the wakes' perturbation field accelerates the fluid. After each wake passage there is a transient, relaxation period characterized by the growth of the low energy, recirculating fluid region and the simultaneous lift of the shear layer away from the suction side wall. The measurements conducted allow the identification of flow regions, as well as temporal and spatial scales that account for the downstream evolution of the viscous layer integral parameters.
机译:低压涡轮机吸入侧的粘性影响约占总涡轮机损耗的1/2。现代设计实践同时包括降低型材的雷诺数和增加其空气动力学负荷,从而损害吸力侧边界层流量。本研究的目的是通过实验阐明低雷诺数状态下吸力侧边界层的时空结构。在稳态接近流动条件下,边界层在达到外部流速峰值后不久便发生层流分离。分离产生低动能,均匀压力的流体区域。在此与外部流动之间,形成了层状剪切层。当层状剪切层到吸力侧壁的距离与剪切层最不稳定的水垢兼容时,就会发生突然的非线性不稳定过程。这种不稳定性会促进形成大型旋涡,从而使气流重新流向吸气侧壁。当接近的流动包括模拟前一涡轮级的移动尾流时,对上述描述进行了修改。层流剪切层经历了通行尾流的扰动场引起的整体失稳。之后,随着尾流的扰动场使流体加速,粘性层重新附着。在每个尾流通道之后,会有一个短暂的松弛期,其特征在于低能量的增长,循环流体区域以及剪切层同时从吸力侧壁升起。进行的测量可以识别流动区域以及说明粘性层积分参数向下游演变的时间和空间尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号