【24h】

Structured Metric Learning for High Dimensional Problems

机译:高维问题的结构化度量学习

获取原文

摘要

The success of popular algorithms such as k-means clustering or nearest neighbor searches depend on the assumption that the underlying distance functions reflect domain-specific notions of similarity for the problem at hand. The distance metric learning problem seeks to optimize a distance function subject to constraints that arise from fully-supervised or semi-supervised information. Several recent algorithms have been proposed to learn such distance functions in low dimensional settings. One major shortcoming of these methods is their failure to scale to high dimensional problems that are becoming increasingly ubiquitous in modern data mining applications. In this paper, we present metric learning algorithms that scale linearly with dimensionality, permitting efficient optimization, storage, and evaluation of the learned metric. This is achieved through our main technical contribution which provides a framework based on the log-determinant matrix divergence which enables efficient optimization of structured, low-parameter Mahalanobis distances. Experimentally, we evaluate our methods across a variety of high dimensional domains, including text, statistical software analysis, and collaborative filtering, showing that our methods scale to data sets with tens of thousands or more features. We show that our learned metric can achieve excellent quality with respect to various criteria. For example, in the context of metric learning for nearest neighbor classification, we show that our methods achieve 24% higher accuracy over the baseline distance. Additionally, our methods yield very good precision while providing recall measures up to 20% higher than other baseline methods such as latent semantic analysis.
机译:流行的算法(例如k均值聚类或最近邻居搜索)的成功取决于以下假设:基础距离函数反映了针对当前问题的领域特定的相似性概念。距离度量学习问题旨在优化距离函数,使其受到完全监督或半监督信息引起的约束。已经提出了几种最新算法来学习低维设置中的这种距离函数。这些方法的主要缺点之一是无法扩展到在现代数据挖掘应用程序中越来越普遍的高维问题。在本文中,我们提出了度量学习算法,该算法可随维度线性缩放,从而允许对学习的度量进行有效的优化,存储和评估。这是通过我们的主要技术贡献来实现的,该贡献提供了基于对数行列式矩阵散度的框架,该框架可以有效优化结构化的低参数马氏距离。通过实验,我们在各种高维域中评估了我们的方法,包括文本,统计软件分析和协作过滤,这表明我们的方法可扩展到具有成千上万个或更多特征的数据集。我们表明,对于各种标准,我们学到的指标可以实现出色的质量。例如,在针对最近邻分类的度量学习中,我们证明了我们的方法在基线距离上的精度提高了24%。此外,我们的方法产生了非常好的精度,同时提供了比其他基准方法(例如潜在语义分析)高20%的召回率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号