首页> 外文会议>Water-Rock Interaction >Reactive transport simulations of hydrothermal circulation in oceanic hydrothermal systems
【24h】

Reactive transport simulations of hydrothermal circulation in oceanic hydrothermal systems

机译:海洋热液系统热液循环反应输运模拟

获取原文

摘要

Circulation of seawater through the oceanic crust and the chemical reactions that occur along the towpath are the most important processes controlling the composition of vent fluids and mineral formation within the crust and on the seafloor. We use three variably coupled reactive transport models to explore the evolution and the interaction of fluid flow, heat transport and chemical reactions in the oceanic crust and the implications for the composition of vent fluids, mineral alteration patterns and the formation ofseafloor chimney deposits. Our first simulation shows that the combined precipitation of anhydrite and chlorite is an important process in reducing the permeability of the upper oceanic crust. This may lead to complete clogging of the recharge zone or to formation of thermally conductive, and hence hotter, regions in the basement aquifer. In a second simulation we demonstrate that the compositional evolution of carbonate chimneys on the seafloor in an ultramafic oceanic system can be related to specific water-rock reactions in the underlying crust. In a 2D model we examine the rates at which different processes operate. Whereas the fluid flow field and the fluid composition evolve almost instantaneously, the alteration of the rock shows the time-integrated effects of the coupled physical and chemical processes. Chemically induced porosity and permeability changes are relatively slow and thousands of years may pass before they become hydrologically and thermally effective. With these examples we demonstrate that reactive transport simulations can provide values of parameters that are difficult to measure (e.g. permeability), they can explain observations such as changes in vent-fluid compositions by elucidating hidden water-rock interaction at depth, and they can provide outcomes to long-term scenarios that are far beyond the time-scales of direct field monitoring.
机译:海水通过大洋地壳的循环以及沿拖曳路径发生的化学反应是控制地壳内和海底排放流体成分和矿物形成的最重要过程。我们使用三个可变耦合的反应输运模型来研究洋壳中流体流动,热输送和化学反应的演化和相互作用,以及对发泄流体组成,矿物蚀变模式和海底烟囱沉积物的形成的影响。我们的第一个模拟结果表明,硬石膏和亚氯酸盐的联合沉淀是降低上层洋壳渗透性的重要过程。这可能导致补给区完全堵塞,或导致地下蓄水层中形成导热区域,从而形成较热的区域。在第二个模拟中,我们证明了在超镁铁质海洋系统中海底碳酸盐烟囱的成分演变可能与下层地壳中特定的水-岩石反应有关。在2D模型中,我们检查了不同过程的运行速率。流体流场和流体成分几乎是瞬时变化的,而岩石的变化则显示了物理和化学过程耦合的时间积分效应。化学诱导的孔隙度和渗透率变化相对较慢,可能需要数千年的时间才能变得具有水文和热学作用。通过这些例子,我们证明了反应性输运模拟可以提供难以测量的参数值(例如渗透率),可以通过阐明深处的水-岩相互作用来解释观测结果,例如排泄流体成分的变化,并且它们可以提供远景的实际成果远远超出了直接现场监测的时间范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号