首页> 外文会议>40th Annual Loss Prevention Symposium >A Novel Experimental Study of Temperature Enhanced CohesiveInterparticle Forces
【24h】

A Novel Experimental Study of Temperature Enhanced CohesiveInterparticle Forces

机译:温度增强内聚颗粒间力的新实验研究

获取原文

摘要

Interactions at elevated temperatures between solid particles occur in a wide range ofindustrial processes, for instance, in the filtering of hot gases, in the drying of pharmaceuticalgranules, in the curing of ceramics, in the combustion of solid fuels and regeneration ofnuclear waste.Often these interactions can cause major problems in the operation of such processes. Forexample, it is well established that the fluidisation behaviour of certain powders issignificantly affected by the presence of strong interparticle forces that, in turn, are the causeof both agglomerate formation and possible operative problems within the reactor. On theother hand, not much is known about the mechanisms of agglomeration, other than that it ismainly due to interfacial phenomena. High temperature adhesion forces arise from theformation of material bridges, usually due to the particle surfaces changing phase througheither chemical reaction or simply melting. Moreover, thin liquid layers of sticky material,which may be present on particle surfaces, such as during reactive coating or dryingprocesses, may also enhance strong interparticle bonds leading to solidification.It is obvious that for the reliable operation of high-temperature processes a goodunderstanding of the fundamental mechanisms of adhesion and cohesion between particles atelevated temperatures is required. Here, adhesion is meant as the force that holds the particlestogether, after which they exhibit cohesive behaviour. Unfortunately, the level ofunderstanding has been hampered by the lack of techniques available to observe and measuresuch interactions.In order to fulfil this technology gap, a novel device, termed a High Temperature Micro-ForceBalance, has been designed and developed which combines force and direct observationmeasurements operated through an adapted micromanipulator technique. The flexibility ofuse for the HTMFB represents its strongest design advantage, permitting experimentalinvestigations over different types of particle interactions at a small scale (e.g. crystallizationof liquid binders, reactive coatings, sintering and composite material interactions).In this work a new approach is presented in order to determine the fundamental mechanismsbehind the formation of agglomerates of uranium oxide in the thermal denitration processduring nuclear fuel reprocessing. A new diagram shows results where the dependency of therupture force for a material bridge (here Magnesium Nitrate Hexahydrate is used as a simulantof Uranyl Nitrate) is plotted when the initial liquid bridge volume and temperature are varied.The results provide an original contribution towards academic and industrial understanding ofthe micro scale mechanisms of agglomeration and material properties at different operativeconditions.
机译:固体颗粒之间在高温下的相互作用在很宽的范围内发生 工业过程,例如,热气的过滤,药物的干燥 颗粒,用于陶瓷的固化,用于固体燃料的燃烧和再生 核废料。 通常,这些相互作用会在此类过程的操作中引起重大问题。为了 例如,众所周知,某些粉末的流化行为是 受到强烈的粒子间作用力的严重影响,而这又是原因 附聚物形成和反应器内可能存在的操作问题。在 另一方面,关于集聚的机制知之甚少,除了 主要是由于界面现象。高温粘附力来自于 材料桥的形成,通常是由于粒子表面通过 化学反应或简单地熔化。此外,粘性材料的液体薄层 可能存在于颗粒表面,例如在反应性涂覆或干燥过程中 的过程中,也可能增强牢固的颗粒间键,从而导致凝固。 显然,对于高温过程的可靠运行, 了解颗粒之间粘附和内聚的基本机理 需要升高温度。在此,附着力是指保持颗粒的力 在一起,之后他们表现出凝聚力。不幸的是, 缺乏可用于观察和测量的技术阻碍了理解 这样的互动。 为了弥补这一技术空白,一种称为高温微力的新型设备 结合了力量和直接观察力而设计和开发的天平 测量是通过一种适应性的微操纵器技术进行的。的灵活性 HTMFB的使用代表了其最强大的设计优势,可以进行实验 小规模研究不同类型的粒子相互作用(例如结晶) 液体粘合剂,反应性涂料,烧结和复合材料的相互作用)。 在这项工作中,提出了一种新方法,以确定基本机制 热脱硝过程中形成氧化铀团聚体的背后 在核燃料后处理过程中。一个新的图显示了结果,其中 材料桥的断裂力(此处使用六水合硝酸镁作为模拟物 当初始液桥的体积和温度变化时,标绘出硝酸铀酰的浓度(图)。 结果为学术界和行业界对以下方面的理解做出了独创的贡献 不同操作条件下团聚的微观机理和材料性能 情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号