首页> 外文会议>40th Annual Loss Prevention Symposium >Determination of the Critical Stress Intensity Factor (KIC) for MicrocrystallineCellulose (MCC) using a developed tensile stress method and its application todouble-layer tablets
【24h】

Determination of the Critical Stress Intensity Factor (KIC) for MicrocrystallineCellulose (MCC) using a developed tensile stress method and its application todouble-layer tablets

机译:使用改进的拉伸应力法测定微晶纤维素(MCC)的临界应力强度因子(KIC)并将其应用于双层片剂

获取原文

摘要

Tablets that have layered compaction zones, produced by different compactionpressures have been found to enable a controlled release rate profile of active ingredients:a desirable characteristic of powder compacts that can be difficult to achieve with singlycompacted tablets. An observed disadvantage of some multi-layered tablets is theinterfacial weakness between the individual layers, which can cause the tablet to fracture bycapping.Single and double layered tablets of the excipient Microcrystalline Cellulose (MCC),FMC Corp., have been studied using an axial tensile stress method, originally developed todetermine the tendency of a single compacted tablet to fracture by capping [1]. Themethodology was assessed by finding the critical stress intensity value at zero porosity(KIC0), using conventional fracture mechanics principles, for singular compacted MCC. Theresult of 0.86 Mpa.m0.5 has been found to be in good agreement with other published work[2-7].The interface tensile strength of double layered compacts has been found toincrease with a rise in applied stress on the upper layer (when initial compaction stress isheld constant). Initial investigations to explain the discrepancies of interface strength ofcompacts subjected to different applied stresses have begun.
机译:具有分层压实区的片剂,这些压实区由不同的压实产生 已经发现压力可以控制活性成分的释放速率: 粉末压粉的理想特性,很难单独实现 压片。一些多层片剂的一个观察到的缺点是 各个层之间的界面无力,可能会导致片剂破裂, 封顶。 赋形剂微晶纤维素(MCC)的单层和双层片剂, FMC公司已经使用轴向拉应力方法进行了研究,最初是为了 通过压盖确定单个压实片剂的破裂趋势[1]。这 通过找到零孔隙率下的临界应力强度值来评估该方法 (KIC0),使用常规断裂力学原理,用于奇异压实的MCC。这 发现0.86 Mpa.m0.5的结果与其他已发表的作品非常吻合 [2-7]。 已发现双层压块的界面抗拉强度为 随着上层施加应力的增加而增加(当初始压实应力为 保持不变)。初步调查以解释界面强度的差异 受到不同施加应力的压粉体已经开始。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号