首页> 外文会议>NACE International CORROSION/2005 Conference >THE MECHANISM OF SRB ACTION IN MIC BASED ON SULFIDE CORROSION AND IRON SULFIDE CORROSION PRODUCTS
【24h】

THE MECHANISM OF SRB ACTION IN MIC BASED ON SULFIDE CORROSION AND IRON SULFIDE CORROSION PRODUCTS

机译:基于硫化物腐蚀和硫化铁腐蚀产物的MIC中SRB作用机理

获取原文

摘要

Different studies have been made using conventional electrochemical polarization techniques to establish mechanisms for the action of sulfate reducing bacteria (SRB) in microbiologically influenced corrosion (MIC). Nevertheless, there has been practically no detailed follow-up correlating the corrosive process with time and open circuit potential, corrosion products, sessile bacterial growth and attack morphology, to establish the mechanisms of this action. This research project designed an experimental structure to make these correlations utilizing the hydrogen permeation technique as its principal electrochemical tool to follow the cathodic reaction of hydrogen evolution, coupled with any other electrochemical, microbiological or chemical technique that would permit following up on the anodic reaction. The study began by reviewing the classic cathodic depolarization theory using an SRB strain identified as Desulfovibrio desulfuricans subespecie desulfuricans ATCC 7775 and a palladium sheet as a substrate with and without cathodic polarization. Later, sheets of carbon steel and iron were used to study the ferrous ions influence in the progression of the corrosive attack and corrosion products, correlated with open circuit potential, sessile growth and hydrogen permeation. Results obtained permitted establishing a useful correlation for proposing the mechanism for this bacterial action in three stages. The first was controlled by the adsorption of bacterial cells and iron sulfide products, principally mackinawite and pyrite, over the metallic surface, activating it through the formation of micro galvanic corrosion cells which generated a hydrogen permeation peak. The second stage showed bacterial and inorganic equilibrium, in which the metal was slightly ennobled by the formation of a more compact iron sulfide film mixed with polymers generated planktonically by the bacteria. The third stage was controlled by a severe, localized corrosive process configured into groups of deep, rounded holes, produced mainly by local reduction of pyrite to mackinawite, due to the acidity generated by bacterial corrosion, and its subsequent detachment, leaving the base metal active facing a very large cathode made up of different iron sulfide products adhering to the metal: mackinawite, pyrite, esmitite, marcasite, greigite, troilite and pyrrotite.
机译:使用常规的电化学极化技术已经进行了不同的研究,以建立硫酸盐还原细菌(SRB)在微生物影响的腐蚀(MIC)中的作用机理。然而,实际上还没有详细的后续措施将腐蚀过程与时间和开路电位,腐蚀产物,无柄细菌的生长和侵袭形态相关联,以建立这种作用的机理。该研究项目设计了一个实验结构,利用氢渗透技术作为其主要的电化学工具来进行这些相关性,以追踪氢逸出的阴极反应,并结合任何其他可以追踪阳极反应的电化学,微生物或化学技术。这项研究首先回顾了经典的阴极去极化理论,该理论使用了一种鉴定为Desulfovibrio desulfuricans subspecies deulfuricans ATCC 7775的SRB菌株,以及带有和不带有阴极极化的钯片。后来,用碳钢和铁片研究了亚铁离子对腐蚀和腐蚀产物发展的影响,这些影响与开路电势,固着生长和氢渗透相关。获得的结果允许建立有用的相关性,以在三个阶段中提出这种细菌作用的机制。第一种方法是通过细菌细胞和硫化铁产品(主要是麦基钠铁矿和黄铁矿)在金属表面上的吸附来控制的,并通过形成微电化学腐蚀池而激活它,从而产生氢渗透峰。第二阶段显示细菌和无机物的平衡,其中金属的形成是通过与细菌细菌浮游产生的聚合物混合形成的更致密的硫化铁膜来实现的。第三阶段由严重的局部腐蚀过程控制,腐蚀过程分为深的圆形孔组,这些腐蚀孔主要是由于细菌腐蚀产生的酸度以及随后的分离,使黄铁矿局部还原为马基金石而产生的,从而使贱金属保持活性面对一个非常大的阴极,该阴极由粘附在金属上的不同硫化铁产品组成:麦基钠铁矿,黄铁矿,硅镁石,镁铁矿,钙铁矿,三菱铁矿和黄铁矿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号