首页> 外文会议>European photovoltaic solar energy conference >Assessment of CuInS2 and CuInS2:(Zn,Mg) Solar Cells by Means of Photoluminescence Spectroscopy
【24h】

Assessment of CuInS2 and CuInS2:(Zn,Mg) Solar Cells by Means of Photoluminescence Spectroscopy

机译:用光致发光光谱法评估CuInS2和CuInS2:(Zn,Mg)太阳能电池

获取原文
获取外文期刊封面目录资料

摘要

Solar cells based on CuInS2 thin films still suffer from Voc limitation compared to the theoretically achievable value as expected from the optical band gap of 1.5 eV. The open circuit voltage can be significantly enhanced from about 700 mV to more than 800 mV via controlled Zinc or Magnesium doping (<1 at. %), whereas the efficiency remains mostly constant. The increase of the open circuit voltage occurs in spite of an extended red response. In order to investigate this phenomenon we used standard tools to perform the basic characterisation of photovoltaic cells (I/U and quantum efficiency (QE) measurements). As it is desirable for a solar cell production to determine the quality of the absorber with respect to the functionality of the later device we use photoluminescencespectroscopy (PL) at room temperature as such a controlling tool. PL spectra at room temperature of undoped CuInS2solar cells, made in a sequential process, are dominated by two main luminescent transitions. From the variation ofthe excitation energy we identify a broad emission as donor-acceptor-pair transition (1.15 eV) and a band edge nearemission as a band-band transition (1.51 eV). However, we find a new broad emission band at 1.35 eV in the spectraof Zn or Mg doped samples. In contradiction to the standard samples, where a less dominant broad sub-band gapemission is an indicator for high device quality, Zn-doped samples show an increase in the open circuit voltage for arising PL-intensity of the new emission. From results of Raman spectroscopy we attribute this behavior to a structuralchange of CuInS2:(Zn, Mg) induced by Zn (Mg) incorporation.
机译:与1.5 eV的光学带隙所预期的理论上可实现的值相比,基于CuInS2薄膜的太阳能电池仍受Voc限制。通过控制锌或镁的掺杂(<1 at。%),开路电压可以从大约700 mV显着提高到800 mV以上,而效率几乎保持恒定。尽管红色响应延长,但仍会发生开路电压的增加。为了调查这种现象,我们使用标准工具来执行光伏电池的基本表征(I / U和量子效率(QE)测量)。由于太阳能电池生产需要确定吸收器的质量(相对于后续设备的功能),因此我们使用光致发光 室温下的光谱(PL)作为这种控制工具。未掺杂CuInS2在室温下的PL光谱 顺序制造的太阳能电池主要由两个主要的发光过渡区组成。从变化 激发能,我们将宽范围的发射确定为供体-受体对跃迁(1.15 eV),附近有一个能带边缘 发射为带-带跃迁(1.51 eV)。但是,我们在光谱中发现了1.35 eV处的一个新的宽发射带 Zn或Mg掺杂的样品。与标准样本相矛盾,在标准样本中,较宽的子带隙占主导地位 发射是高设备质量的指标,掺杂锌的样品显示了开路电压的增加。 新排放物的PL强度上升。根据拉曼光谱的结果,我们将此行为归因于结构 Zn(Mg)掺入引起CuInS2:(Zn,Mg)的变化

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号