首页> 外文会议>Applied Superconductivity 2003 >Modelling of Resistivity Changes in MultifilamentaryCu-Ta-Nb-Sn Conductors for Monitoring theDevelopment of Superconducting Nb3Sn Layers DuringIsothermal Heat Treatment
【24h】

Modelling of Resistivity Changes in MultifilamentaryCu-Ta-Nb-Sn Conductors for Monitoring theDevelopment of Superconducting Nb3Sn Layers DuringIsothermal Heat Treatment

机译:多丝Cu-Ta-Nb-Sn导体电阻率变化的模型,用于监测等温热处理过程中Nb3Sn超导层的发展

获取原文

摘要

During the manufacture of multifilamentary Nb3Snsuperconducting wires by reaction diffusion processes, the thickness andmicrostructure of the Nb3Sn layer changes as a function of time,temperature, local tin concentration and wire geometry. Thesuperconducting performance of these wires depends sensitively onfeatures of the A15 phase and the cryo-magnetic stabilisation. Normalstateelectrical resistivity is also strongly dependent on many of thesefeatures. Models have been developed to predict the electrical resistivityof several bronze-process multifilamentary Cu-Ta-Nb-Sn wires as afunction of temperature and the degree of reaction. Experimentalcharacterisation of these composite wires after heat treatment has beenused with diffusion modelling to permit the prediction of resistivity bothafter and during heat treatment, which is of great importance forconductor optimisation. The predictions of the diffusion model have beencompared with experimental composition profiles, and good agreementhas been found. Predicted resistivities compare well with measurementsmade in situ during cooling after isothermal annealing when the extent ofreaction is constant and known, but predictions and experiment cannot yetbe directly correlated during isothermal reaction because low-temperaturereaction (during initial heating) has not been modelled. When thisrefinement is complete, this approach should permit monitoring, controland optimisation of the design and manufacturing process forsuperconducting wires, ultimately including control of the microstructuraldevelopment of Nb3Sn layers, especially the grain size.
机译:在制造多丝Nb3Sn的过程中 超导线通过反应扩散过程,厚度和 Nb3Sn层的微观结构随时间而变化, 温度,局部锡浓度和导线几何形状。这 这些导线的超导性能敏感地取决于 A15相的特性和低温磁稳定。正常状态 电阻率也强烈依赖于其中许多 特征。已经开发出模型来预测电阻率 青铜工艺的多丝Cu-Ta-Nb-Sn焊丝的制备 温度和反应程度的函数。实验性 热处理后对这些复合线材进行了表征 与扩散建模一起使用,可以预测电阻率 在热处理之后和期间,这对于 指挥优化。扩散模型的预测是 与实验成分图相比,一致性好 已找到。预测的电阻率与测量值比较好 等温退火后在冷却过程中原位制造的程度 反应是恒定且已知的,但尚无法进行预测和实验 在低温下直接相关,因为低温 反应(在初始加热过程中)尚未建模。当这个 完善完成后,此方法应允许监视,控制 的设计和制造过程的优化 超导线,最终包括对微结构的控制 Nb3Sn层的发展,特别是晶粒尺寸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号