首页> 外文会议>SPE annual technical conference and exhibition >Case Study: Analyzing Bottomhole Temperature Gauge Data in Gulf of Mexico Frac Packs to Optimize Fracture Fluid Crosslink, Stability and Break Times
【24h】

Case Study: Analyzing Bottomhole Temperature Gauge Data in Gulf of Mexico Frac Packs to Optimize Fracture Fluid Crosslink, Stability and Break Times

机译:案例研究:分析墨西哥湾压裂块中的井底温度计数据,以优化压裂液的交联,稳定性和断裂时间

获取原文

摘要

The crosslinkers, buffers and breakers that are used in fracturefluid designs have typically been tested with emphasis placedon break time. Fracture fluids for high permeabilityformations need to be designed for multiple purposes:wellbore crosslink time, stability, and break time. Crosslinktime in the wellbore is critical for fracture propagation.Stability is critical for proppant transport. Break time iscritical for proper cleanup of the fracture fluid so thatproppant-pack conductivity is maximized. It is important thatthese times are based on the correct temperatures.Fracture fluid additives have primarily been based onbottomhole static temperature (BHST) or some portion ofBHST. The wellbore temperature while pumping is typicallycooler than BHST. Crosslink and stability time should bebased on the cooler wellbore temperature. Test temperaturefor break time, on the other hand, should be based ontemperature in the fracture once the treatment has beencompleted. Therefore, a fluid design needs to effectivelysatisfy: 1) crosslink time at a cooler wellbore temperaturewhile pumping, 2) stability time at a cooler wellbore and insitufracture temperature while pumping, and 3) break time ata temperature closer to bottomhole static temperature oncepumping has ceased.This paper analyzes the bottomhole gauge data from over50 frac packs in the Gulf of Mexico. The data was evaluatedby identifying the maximum cool down while pumping andidentifying the percentage of temperature increase aftertreatment. The BHST's ranged from 122°F to 262°F. Theobjective is to evaluate the design temperature so that therecommended fracture fluid will have an effective crosslink inthe cooled-down workstring, stability for proppant transport,and an effective break time upon completion of thefracture treatment.
机译:断裂中使用的交联剂,缓冲剂和破坏剂 流体设计通常经过重点测试 在休息时间。高渗透压裂液 编队需要设计用于多种目的: 井筒交联时间,稳定性和断裂时间。交联 井眼中的时间对于裂缝扩展至关重要。 稳定性对支撑剂的运输至关重要。休息时间为 对于正确清洁压裂液至关重要,因此 支撑剂充填电导率达到最大。重要的是 这些时间基于正确的温度。 压裂液添加剂主要基于 井底静态温度(BHST)或 BHST。抽水时的井眼温度通常为 比BHST凉爽。交联和稳定时间应为 基于较凉的井眼温度。试验温度 另一方面,休息时间应基于 治疗后骨折的温度 完全的。因此,流体设计需要有效地 满足:1)在较低的井眼温度下的交联时间 在抽水时,2)在较凉的井眼和原位稳定时间 泵送时的断裂温度,以及3)断裂时间 一次接近井底静态温度的温度 抽水已停止。 本文分析了井下测井仪的数据 墨西哥湾有50个压裂包装。数据进行了评估 通过确定泵送时的最大降温和 确定温度升高后的百分比 治疗。 BHST的温度范围为122°F至262°F。这 目的是评估设计温度,以便 推荐的压裂液将具有有效的交联 冷却的工作管柱,支撑剂运输的稳定性, 以及完成后的有效休息时间 骨折治疗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号