首页> 外文会议>Turbomachinery >TRIGENERATION: THERMODYNAMIC PERFORMANCE AND COLD EXPANDER AERODYNAMIC DESIGN IN HUMID AIR TURBINES
【24h】

TRIGENERATION: THERMODYNAMIC PERFORMANCE AND COLD EXPANDER AERODYNAMIC DESIGN IN HUMID AIR TURBINES

机译:过渡:湿式涡轮机的热力学性能和冷膨胀机气动设计

获取原文

摘要

Improving electrical efficiency has been proposed as the most convenient means of reducing, e.g. CO_2 emission from power plants. Increasing fuel utilization through combined heat and power generation is another useful measure for emission reduction. Trigeneration technology for the production of heat, power and cooling is an interesting alternative for further improvement of fuel utilization. Previous studies at The Department of Heat and Power Engineering in Lund, Sweden, have shown that wet cycles are the best candidates, with a high potential to achieve fuel utilization higher than 100%, based on the fuel's lower heating value. Apart from high fuel utilization, trigeneration technology can produce cooling without the use of harmful cooling agents. The basic principle of trigeneration is to interrupt the expansion at an elevated pressure level and extract heat from the working medium. The final expansion then takes place at low temperature admission levels resulting in a very low-temperature at the turbine exhaust. In this paper results from both thermodynamic analysis of the humid air turbine concept in conjunction with trigeneration, and the expander design criterion required for realization of the last section of the expander are presented. The thermodynamic study gives the boundary conditions for the cold turbine design. Optimum conditions for the inlet to the cold expander are a pressure of 2 to 3 bar and a temperature of 47°C. This may put serious loading constraints on the final cold expander design due to Mach and Reynolds number effects. This problem has been investigated and a detailed study of the aerodynamic loading and efficiency levels achievable is presented, using a mid-span and SCM-throughflow approach. This paper will address the cycle performance and the cold turbine aerodynamic limitations on the thermodynamic optima.
机译:已经提出了提高电效率作为减少例如电枢的最方便的方法。发电厂的CO_2排放。通过热电联产提高燃料利用率是减少排放的另一项有用措施。用于发电,供热和制冷的三联产技术是进一步提高燃料利用率的有趣替代方案。瑞典隆德市热力与动力工程系的先前研究表明,湿循环是最佳的选择,基于较低的燃料发热量,湿循环具有很高的潜力,可实现高于100%的燃料利用率。除了高燃料利用率外,三代发电技术还可以在不使用有害冷却剂的情况下进行冷却。三代发电的基本原理是中断高压下的膨胀并从工作介质中吸收热量。然后,最终膨胀在低温允许水平下发生,从而导致涡轮机排气口处的温度非常低。本文从湿空气涡轮概念的热力学分析和三联发电的结果,提出了实现膨胀机最后一部分所需的膨胀机设计标准。热力学研究为冷风机设计提供了边界条件。冷膨胀机入口的最佳条件是2至3 bar的压力和47°C的温度。由于马赫数和雷诺数的影响,这可能会对最终的冷膨胀机设计造成严重的负载限制。已经对这个问题进行了调查,并使用中跨和SCM贯通方法对可实现的空气动力学负荷和效率水平进行了详细研究。本文将讨论循环性能和冷机空气动力学对热力学最优性的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号