首页> 外文会议>7th U.S. National Conference on Earthquake Engineering >INFLUENCE OF SUBSTRUCTURE YIELDING ON SEISMICALLY ISOLATED BRIDGES DESIGNED ACCORDING TO THE AASHTO GUIDE SPECIFICA TIONFOR SEISMIC ISOLATION DESIGN
【24h】

INFLUENCE OF SUBSTRUCTURE YIELDING ON SEISMICALLY ISOLATED BRIDGES DESIGNED ACCORDING TO THE AASHTO GUIDE SPECIFICA TIONFOR SEISMIC ISOLATION DESIGN

机译:根据AASHTO规范的隔震设计,子结构的屈服对设计的隔震桥梁的影响

获取原文

摘要

Although the basic intent of seismic isolation of buildings and bridges is similar, one notable difference for the design of isolated bridge systems is that the flexible substructure column bents below the isolation interface may be allowed to be designed at their elastic limit at the systems design displacement. This feature is facilitated by use of force reduction factors which eliminate overstrength in the demand-capacity equation for the case of earthquake loading (AASHTO, 1999). The AASHTO Guide Specification for Seismic Isolation Design of Bridges states, "...the lower R-Factors ensure, on the average, essentially elastic substructure behavior in the design-basis earthquake". In this respect, it is an inherent assumption in the formulation of the AASHTO code that substructure yielding will be tolerated in the event of system response above the mean. Since no further guidance is given within the code to assess or provide for this substructural yielding, the code formulation further implies that this yielding will not adversely effect the performance of the isolated system, nor inflict ductility demands on substructure components beyond their inherent limits. Studies were performed to systematically evaluate the efficacy of this new code formulation in its ability to reliably meeting these specified performance objectives, over a broad range of seismically isolated bridge systems, for demands imposed by earthquake motions representative of design basis seismic events. The effect of substructure yielding on simple isolated bridge systems designed optimally to these AASHTO provisions is found to be only slight on peak total and isolator displacement and base shear demands on average when subjected to a suite of spectrum compatible motions. However, peak structural displacements are found to be considerably larger on average for these systems when the effect of substructure yielding is considered. More notably, ductility demands for these systems designed according to code provisions with yielding substructures are found to be much larger than unity on average over a wide range of isolated bridge system characteristic parameters when subjected to a suite of spectrum compatible motions. Further research is needed to establish whether the AASHTO code procedures provide sufficient nominal ductility capacity in their component design specifications to meet the larger substructure ductility demands implied by the results of this study.
机译:尽管建筑物和桥梁隔震的基本意图是相似的,但隔震桥梁系统设计的一个显着差异是,可以允许在隔震界面下方弯曲的柔性子结构柱在系统设计位移时以其弹性极限进行设计。 。通过使用力减小因子来消除地震荷载情况下需求能力方程中的过强度,可以简化此功能(AASHTO,1999)。 AASHTO桥梁隔震设计指南规范指出:“ ...较低的R因子在设计基础地震中平均确保基本弹性的子结构行为”。在这方面,AASHTO代码的制定中固有的假设是,如果系统响应高于平均值,则将允许子结构屈服。由于在规范中没有给出评估或提供该子结构屈服的进一步指导,因此该规范的制定还暗示该屈服不会对隔离系统的性能产生不利影响,也不会对子结构部件的延性要求超出其固有范围。进行了研究以系统地评估此新规范的有效性,以其能够在广泛的地震隔离桥梁系统上可靠地满足这些指定的性能目标,以满足代表设计基准地震事件的地震运动提出的要求。研究发现,子结构屈服对针对这些AASHTO规定进行了最佳设计的简单隔离桥系统的影响,在受到一系列频谱兼容运动的影响时,对总峰值和隔离器位移以及平均基础剪力要求的影响很小。但是,考虑到子结构屈服的影响,发现这些系统的平均峰值结构位移平均要大得多。更值得注意的是,发现这些系统在遵循一系列频谱兼容运动的情况下,在宽范围的隔离桥梁系统特征参数上,根据规范的规定设计的具有延展性子结构的系统的延展性要求平均比统一性要大得多。需要进行进一步的研究以确定AASHTO规范程序是否在其组件设计规范中提供了足够的名义延性能力,以满足本研究结果所隐含的更大的子结构延性要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号