首页> 外文会议>International technical conference on coal utilization fuel systems >CONTINUING STUDIES ON DIRECT AQUEOUS MINERAL CARBONATION FOR CO_2 SEQUESTRATION
【24h】

CONTINUING STUDIES ON DIRECT AQUEOUS MINERAL CARBONATION FOR CO_2 SEQUESTRATION

机译:矿山直接水碳共存的连续研究

获取原文

摘要

Direct aqueous mineral carbonation has been investigated as a process to convert gaseous CO_2 into a geologically stable, solid final form. The process utilizes a solution of sodium bicarbonate (NaHCO_3), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg_2SiO_4) or serpentine [Mg_3Si_2O_5(OH)_4]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface and gas dispersion within the aqueous phase. The process includes dissolution of the mineral and precipitation of the magnesium carbonate mineral magnesite (MgCO_3) in a single unit operation. Activation of the silicate minerals has been achieved by thermal and mechanical means, resulting in up to 80% stoichiometric conversion of the silicate to the carbonate within 30 minutes. Heat treatment of the serpentine, or attrition grinding of the olivine and/or serpentine, appear to activate the minerals by the generation of a non-crystalline phase. Successful conversion to the carbonate has been demonstrated at ambient temperature and relatively low (10 atm) partial pressure of CO_2 (P_(CO2))- However, optimum results have been achieved using the bicarbonate-bearing solution, and high P_(CO2). Specific conditions include: 185°C; P_(CO2)=150 atm; 30% solids. Studies suggest that the mineral dissolution rate is not solely surface controlled, while the carbonate precipitation rate is primarily dependent on the bicarbonate concentration of the slurry. Current and future activities include further examination of the reaction pathways and pretreatment options, the development of a continuous flow reactor, and an evaluation of the economic feasibility of the process.
机译:已经研究了直接含水矿物碳酸化作为将气态CO_2转化为地质稳定的固体最终形式的过程。该方法利用碳酸氢钠(NaHCO_3),氯化钠(NaCl)和水的溶液与矿物反应物混合,例如橄榄石(Mg_2SiO_4)或蛇纹石[Mg_3Si_2O_5(OH)_4]。通过在表面中扩散和气体在水相中的分散,二氧化碳溶解到该浆料中。该过程包括在单个单元操作中溶解矿物和沉淀碳酸镁矿物菱镁矿(MgCO_3)。硅酸盐矿物的活化已经通过热和机械手段实现,导致在30分钟内硅酸盐转化为碳酸盐的化学计量高达80%。蛇纹石的热处理,或橄榄石和/或蛇纹石的磨削,似乎通过产生非晶相而活化了矿物质。已证明在环境温度和较低的CO_2(P_(CO2))分压(10 atm)的分压下成功转化为碳酸盐。但是,使用含碳酸氢盐的溶液和高P_(CO2)可获得最佳结果。具体条件包括:185°C; P_(CO2)= 150 atm; 30%固体。研究表明,矿物质的溶解速度并不仅限于表面控制,而碳酸盐的沉淀速度主要取决于浆液中的碳酸氢盐浓度。当前和将来的活动包括进一步检查反应途径和预处理方案,开发连续流反应器以及评估该方法的经济可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号