首页> 外文会议>SPE annual technical conference and exhibition >Scaling up matrix-fracture transfers in dual-porosity models: theory and application
【24h】

Scaling up matrix-fracture transfers in dual-porosity models: theory and application

机译:在双孔隙度模型中扩大基质裂缝的转移:理论与应用

获取原文

摘要

The dual-porosity model concept has been introduced to simulate flows through naturally-fractured reservoirs because of the specificity of those media: fluids are mainly stored in the matrix and flow to the wells through the fracture system. A simplified formulation of matrix-fracture fluid transfers at the scale of a simulator cell uses a pseudo-steady-state (PSS) transfer equation involving a constant exchange coefficient also called shape factor. The shape factor has long remained controversial because a theoretical framework was missing and evidence was given of its dependence on the mechanism of flow. This paper presents different approaches to determine the matrix-fracture transfer behavior and derive the best approximate expression of the shape factor. These methods make use of the joint element technique for discretizing the actual fractured medium and are based on either (a) direct simulation of flow exchanges at local scale, (b) the application of upscaling theory, or (c) the implementation of a novel random walk method. A resolution example is given for a realistic image of a fractured medium in 2D single-phase flow conditions. The whole process of matrix-fracture transfer, including the intial transient states, has been determined from local-scale simulation. All upscaling methods lead to the same approximate expression of the shape factor to be used in the PSS equation describing matrix-fracture transfer. This shape factor is expressed versus equivalent block dimensions, which are in practice determined with a recently-developed nethodology involving geological image processing. Then, an extension to multiphase flow conditions is presented. The local-scale simulation approach is used to compute the exact transient water-oil capillary transfers at dual-porosity cell scale. These transfers are quite well reproduced with a PSS formulation incorporating the shape factor expression defined for single-phase transfers. A transient shape factor, formulated versus simulator unknowns, has also been tested. It turns out that capillary transfers can be reproduced with a dual-porosity simulator without resorting to any parameter tuning. To conclude, reliable simulation tool and upscaling methods are now available to compute matrix-fracture transfers on actual fractured media and derive the optimal PSS formulation to be used in dual-porosity simulators.
机译:由于这些介质的特殊性,引入了双孔隙度模型概念来模拟通过自然压裂油藏的流动:流体主要存储在基质中,并通过压裂系统流向井。在仿真器单元规模上简化的矩阵裂缝流体传输公式使用了包含恒定交换系数(也称为形状因子)的拟稳态(PSS)传输方程。形状因数长期以来一直是有争议的,因为缺少一个理论框架,并且有证据表明其依赖于流动机制。本文提出了不同的方法来确定基体-断裂传递行为,并得出形状因子的最佳近似表达式。这些方法利用联合元素技术离散实际的裂缝介质,并且基于以下两种方法:(a)直接模拟局部规模的流动交换;(b)放大理论的应用;或(c)实施新的方法随机游走法。给出了一个分辨率示例,用于二维单相流动条件下的裂缝介质的真实图像。基质断裂转移的整个过程,包括初始瞬态,已经从局部尺度模拟中确定。所有放大方法都会导致形状因数的近似表示,该近似因数将用于描述基质断裂转移的PSS方程中。相对于等效块尺寸来表示此形状因子,而等效块尺寸实际上是由最近开发的涉及地质图像处理的网络学确定的。然后,提出了对多相流动条件的扩展。局部尺度模拟方法用于在双孔隙度单元尺度上计算出精确的瞬态水-油毛细管传输。这些转移用结合了为单相转移定义的形状因子表达的PSS配方可以很好地重现。还对瞬态形状因数(相对于模拟器未知数)进行了测试。事实证明,可以使用双孔隙度模拟器重现毛细血管转移,而无需进行任何参数调整。总而言之,现在可以使用可靠的仿真工具和放大方法来计算实际裂缝介质上的基质裂缝转移,并得出可在双孔隙度模拟器中使用的最佳PSS公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号