首页> 外文会议>Annual Offshore Technology Conference;OTC 98 >Seismic Reservoir Monitoring: Application of Leading Edge Technologies in Reservoir Management
【24h】

Seismic Reservoir Monitoring: Application of Leading Edge Technologies in Reservoir Management

机译:地震储层监测:前沿技术在储层管理中的应用

获取原文

摘要

Seismic reservoir monitoring (4D seismic) involves time lapse or periodic acquisition of 3D seismics designed to provide a detailed image of the reservoir. The interpreted changes in reservoir parameters are then associated directly with the production recovery process. To be successful, a seismic reservoir monitoring program requires more than repeatability of 3D seismic acquisition and processing. To be able to understand the changes observed in repeat seismic images, these changes must have a clear and understandable relationship to the production-recovery process. Development of these relationships requires a detailed understanding of the impact of the production and recovery processes on the rock-fluid system within the reservoir. Once an understanding of the changes occurring in the reservoir is developed, the effect that each of these has on the seismic response (velocity/density) must be understood quantitatively. The changes in reservoir conditions (saturation, pressure, temperature, and pore-volume) due to production and recovery mechanisms can then be visualized by coupling 3D flow simulation with 3D seismic simulation (forward modeling) and can be evaluated to plan repeat 3D seismic surveys.Both reservoir characterization and reservoir monitoring are part of the reserves optimization process. Effective implementation of this process requires careful attention to both elements. Detailed reservoir descriptions and the resulting flow models provide a quantitative understanding of reservoir heterogeneity and processes related to production of hydrocar-bons. Characterizing changes in properties due to the production/recovery process that can be monitored by seismic data then determines the structure of the seismic monitoring system.Phillips' 8 billion BOE Ekofisk field in the Norwegian North Sea provides a valuable opportunity to focus new technologies in reservoir characterization and reservoir monitoring on improving reservoir management and recovery of a significant portion of the reserves. A major characterization effort initiated in 1994 resulted in a 25 million cell reservoir description and coupled fluid flow model. Insights gained in the characterization have led to a broad evaluation of the seismic reservoir monitoring potential on the field. These efforts include substantial rock physics, log analysis, and seismic forward modeling programs. Results from these studies show a clear seismic response to the ongoing waterflood. This work forms the basis of a seismic reservoir monitoring program to be implemented field wide in 1998.
机译:地震储层监测(4D地震)涉及时间推移或定期采集3D地震,这些地震旨在提供储层的详细图像。储层参数的解释变化然后直接与生产恢复过程相关联。要获得成功,地震储层监控程序不仅需要3D地震采集和处理的可重复性。为了能够理解在重复地震图像中观察到的变化,这些变化必须与生产-恢复过程具有清晰可理解的关系。这些关系的发展需要对生产和采收过程对储层内流体系统的影响有详细的了解。一旦了解了储层中发生的变化,就必须定量地理解每个变化对地震响应(速度/密度)的影响。然后,可以通过将3D流动模拟与3D地震模拟(正演模拟)结合起来,可视化由生产和采收机制引起的储层条件(饱和度,压力,温度和孔隙体积)的变化,并进行评估以计划重复的3D地震勘测。 储层表征和储层监测都是储量优化过程的一部分。有效执行此过程需要对这两个要素都给予认真的关注。详细的储层描述和由此产生的流动模型提供了对储层非均质性和与油气生产相关的过程的定量理解。 糖果。表征由于可以通过地震数据进行监视的生产/恢复过程而导致的属性变化,然后确定地震监视系统的结构。 菲利普斯位于挪威北海的80亿桶京东方Ekofisk油田提供了宝贵的机会,可将新技术聚焦于储层表征和储层监测,以改善储层的很大一部分的储层管理和回收率。 1994年开始的一项主要表征工作导致了2500万个细胞储层描述和耦合流体流动模型。在表征中获得的见识导致对地震储层在现场的监测潜力进行了广泛的评估。这些工作包括大量的岩石物理学,测井分析和地震正演模拟程序。这些研究的结果表明,对正在进行的注水有明显的地震反应。这项工作构成了将于1998年在现场实施的地震储层监测计划的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号