首页> 外文会议>Australasian fluid mechanics conference;AFMC >Parallel Processing in Lagrangian Treatment of Particulate phase in a Power Utility Boiler
【24h】

Parallel Processing in Lagrangian Treatment of Particulate phase in a Power Utility Boiler

机译:电站锅炉拉格朗日处理颗粒相的并行处理

获取原文

摘要

The complexity of the flow generated in power utility boilers, (3D, turbulent and two-phase flow), has pushed designers to use empirical information to investigate the problems associated with erosion reduction, heat transfer enhancement and more efficient boiler heat exchangers. The annual cost of erosion is as high as several million dollars; this is too expensive procedure (Tu et al., 1997). Hence, it is desirable to utilise CFD codes to predict the very detailed flow within power utility boilers under different operating conditions. The present paper describes a general three-dimensional calculation procedure based on the Lagrangian approach to predict complex fly-ash flow in a power utility boiler. The RNG k-ε turbulence model (Orszag et al., 1993) is used to characterise the time and length scales of the continuous phase turbulence. Models investigated are used to predict turbulent, fully developed gas-solid boiler configuration. The architecture considered is a HP, 7200, or 4 processors system. In single-phase modelling the grid has been partitioned into multiple sub-domains such that the number of partitions is an integral multiple of the number of compute nodes available. Each partition is resident on a different computer node. This paper outlines the effect of partitioning on parallel processing and illustrates the rate of process and real time savings in going to more processors. The present study will show that as the number of computer nodes increases, the turnaround time for the solution will decrease. However, the parallel efficiency decreases as the ratio of communication to computation increases. The paper will address the important issues of achieving high parallel efficiency for interacting physical processes in complex geometric domains.
机译:电站锅炉中产生的流的复杂性(3D,湍流和两相流)促使设计人员使用经验信息来研究与减少侵蚀,增强传热和更高效的锅炉热交换器相关的问题。每年的侵蚀成本高达数百万美元。这太昂贵了(Tu et al。,1997)。因此,期望利用CFD代码来预测在不同操作条件下的电站锅炉内的非常详细的流量。本文介绍了一种基于拉格朗日方法的通用三维计算程序,以预测电站锅炉中的复杂粉煤灰流量。 RNGk-ε湍流模型(Orszag等,1993)用于表征连续相湍流的时间和长度尺度。所研究的模型用于预测湍流,充分发展的气固锅炉配置。所考虑的体系结构是HP,7200或4处理器系统。在单阶段建模中,网格已被划分为多个子域,因此分区数是可用计算节点数的整数倍。每个分区都驻留在不同的计算机节点上。本文概述了分区对并行处理的影响,并说明了在使用更多处理器时的处理速度和实时节省。本研究将显示,随着计算机节点数量的增加,解决方案的周转时间将减少。但是,并行效率随着通信与计算的比率增加而降低。本文将解决在复杂的几何域中实现物理过程交互的高并行效率的重要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号