首页> 外文会议>ASME international mechanical engineering congress and exposition >HALLOYSITE CLAY NANOTUBES WITH PCM FOR THERMAL ENERGY STORAGE AND EFFICIENCY
【24h】

HALLOYSITE CLAY NANOTUBES WITH PCM FOR THERMAL ENERGY STORAGE AND EFFICIENCY

机译:具有PCM的HalloySite粘土纳米管,用于热储能和效率

获取原文

摘要

There is opportunity to achieve energy savings and increasing energy sustainability through new techniques addressing thermal storage challenges. New materials may be useful to a wide variety of applications including solar thermal as well as building heating and cooling systems. This present work focuses on new thermal storage technology that may be utilized across a wide spectrum of structures. The technology itself relies on implementation of a phase-change insulation material that combines unique characteristics of naturally occurring hal-loysite clay nanotubes with low-cost eicosane-type waxes. This combination results in a microtube skeleton supported material. This allows for material shape preservation during phase transition heat conversion. Investigations further consider the addition of thermal conductivity enhancement via graphite-based nano particles or tubes. In this manner a unique material is presented that is capable of maintaining shape during wax phase change while exhibiting increase in thermal conductivity. Unlike wax-based phase change material systems that allow the wax to change structure during phase change, the use of halloysite nanotubes also maintains the overall thermal conductivity increase through numerous phase change cycles. Multiple material combinations that vary included percentages of both halloysite and conductivity enhancement are investigated. Thermal conductivity of wax-halloysite-graphite (45/45/10 %) composite showed increased conductivity to 1.35 W/mK. This was nearly 3 times higher than the base wax-halloysite composite. Wax-halloysite-graphite-carbon nanotubes (45/45/5/5 %) composite showed thermal conductivity of 0.83 W/mK while maintaining original shape until 81°C (above the wax melting point).
机译:通过寻址热储存挑战的新技术,有机会实现节能和提高能源可持续性。新材料可用于各种应用,包括太阳能热以及建筑物加热和冷却系统。本工作侧重于可以在广泛的结构上使用的新热存储技术。该技术本身依赖于相变绝缘材料的实施,所述相变绝缘材料将天然存在的Hal-Loysite粘土纳米管与低成本eICOSANE型蜡的独特特征结合起来。这种组合导致MicroTube骨架支撑的材料。这允许在相变热转换期间进行材料形状保存。研究进一步考虑通过基于石墨的纳米颗粒或管添加热导电增强。以这种方式,提出了一种独特的材料,其能够在蜡相变化期间保持形状,同时表现出导热率的增加。与允许蜡的基于蜡的相变材料系统不同,允许蜡在相变期间改变结构,使用霍罗伊石纳米管的使用也使整体导热率通过多相变化循环保持增加。调查了多种改变的材料组合包括哈利亚钛矿和电导率增强的百分比。蜡博物矿 - 石墨(45/45/10%)复合材料的导热系数显示出导电性增加至1.35W / mK。这比基础蜡博物矿复合材料高近3倍。蜡 - 哈利亚钛矿 - 石墨碳纳米管(45/45/5/5%)复合材料显示出0.83W / mk的导热率,同时保持原始形状直至81℃(蜡熔点上方)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号