首页> 外文会议>ASME international mechanical engineering congress and exposition >Development of a latching valve for Micro-Chem-Lab
【24h】

Development of a latching valve for Micro-Chem-Lab

机译:微型化学实验室的锁定阀的开发

获取原文

摘要

An integrated microsystem to detect traces of chemical agents (μChemLab{sup}(tm)) is being developed at Sandia for counter-terrorism and nonproliferation applications. This microsystem has two modes of operation: liquid and gas phase detection. For the gas phase detection, we are integrating these critical components: a preconcentrator for sample collection, a gas chromatographic (GC) separator, a chemically selective flexural plate wave (FPW) array mass detector, and a latching valve onto a single chip. By fabricating these components onto a single integrated system (μChemLab{sup}(tm) on a chip), the advantages of reduced dead volume, lower power consumption, and smaller physical size can be realized. In this paper, the development of a latching valve will be presented. The key design parameters for this latching valve are: a volumetric flow rate of 1 mL/min, a maximum hold-off pressure of 40 kPa (6 psi), a relatively low power, and a fast response time. These requirements have led to the design of a magnetically actuated latching relay diaphragm valve. Magnetic actuation is chosen because it can achieve sufficient force to effectively seal against back pressure and its power consumption is relatively low. The actuation time is rapid, and valve can latch in either an open or closed state. A corrugated parylene membrane is used to separate the working fluid from internal components of the valve. Corrugations in the parylene ensure that the diaphragm presents minimum resistance to the actuator for a relativley large deflection. Two different designs and their performance of the magnetic actuation have been evaluated. The first uses a linear magnetic drive mechanism, and the second uses a relay mechanism. Preliminary results of the valve performance indicates that the required driving voltage is about 10 volts, the measured flow rate is about 50 mL/min, and it can hold off pressure of about 5 psi (34 kPa). Latest modifications of the design show excellent performance improvements.
机译:用于检测化学试剂的痕量的集成微系统(μChemlab{Sup}(TM),用于桑迪亚以进行反恐和不可溶解的应用。该微系统有两种操作模式:液体和气体相位检测。对于气相检测,我们正在整合这些关键组分:用于样品收集的预融合器,气体色谱(GC)分离器,化学选择性弯曲板波(FPW)阵列质量检测器和锁定阀到单个芯片上。通过将这些组件制造到单一集成系统上(芯片上的μChemlab{Sup}(TM)),可以实现减小体积,较低功耗和更小的物理尺寸的优点。本文将呈现闩锁阀的开发。该闩锁阀的关键设计参数是:体积流量为1ml / min,最大阻止压力为40kPa(6psi),相对低的功率和快速响应时间。这些要求导致了磁致动闩锁继电器隔膜阀的设计。选择磁性致动,因为它可以实现足够的力以有效地密封背压,并且其功耗相对较低。致动时间快,阀门可以锁定在打开或关闭状态。波纹聚对二甲苯膜用于将工作流体与阀的内部部件分离。聚对聚丙烯的波纹确保隔膜对致动器的最小电阻呈现出依赖性大偏转。已经评估了两种不同的设计及其对磁性致动的性能。首先使用线性磁力驱动机构,第二个使用继电器机构。阀门性能的初步结果表明所需的驱动电压约为10伏,测量的流速约为50ml / min,可以阻止约5psi(34kPa)的压力。最新改进设计表现出出色的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号