首页> 外文会议>ACM/IEEE conference on Supercomputing >Transient dynamics simulations
【24h】

Transient dynamics simulations

机译:瞬态动力学模拟

获取原文

摘要

Transient dynamics simulations are commonly used to model phenomena such as car crashes, underwater explosions, and the response of shipping containers to high-speed impacts. Physical objects in such a simulation are typically represented by Lagrangian meshes because the meshes can move and deform with the objects as they undergo stress. Fluids (gasoline, water) or fluid-like materials (earth) in the simulation can be modeled using the techniques of smoothed particle hydrodynamics. Implementing a hybrid mesh/particle model on a massively parallel computer poses several difficult challenges. One challenge is to simultaneously parallelize and load-balance both the mesh and particle portions of the computation. A second challenge is to efficiently detect the contacts that occur within the deforming mesh and between mesh elements and particles as the simulation proceeds. These contacts impart forces to the mesh elements and particles which must be computed at each timestep to accurately capture thephysics of interest. In this paper we describe new parallel algorithms for smoothed particle hydrodynamics and contact detection which turn out to have several key features in common. Additionally, we describe how to join the new algorithms with traditional parallel finite element techniques to create an integrated particle/mesh transient dynamics simulation. Our approach to this problem differs from previous work in that we use three different parallel decompositions, a static one for the finite element analysis and dynamic ones for particles and for contact detection. We have implemented our ideas in a parallel version of the transient dynamics code PRONTO-3D and present results for the code running on a large Intel Paragon.

机译:

瞬态动力学仿真通常用于对诸如车祸,水下爆炸以及运输集装箱对高速撞击的响应等现象进行建模。在这种模拟中,物理对象通常由拉格朗日网格表示,因为网格在受到应力时会随对象一起移动和变形。可以使用平滑粒子流体动力学技术对模拟中的流体(汽油,水)或类流体材料(地球)进行建模。在大规模并行计算机上实现混合网格/粒子模型提出了一些困难的挑战。一个挑战是同时并行化和负载平衡计算的网格和粒子部分。第二个挑战是随着模拟的进行,有效地检测变形网格内以及网格元素与粒子之间发生的接触。这些接触将力施加到网格元素和颗粒上,必须在每个时间步进行计算才能准确地捕获感兴趣的物理场。在本文中,我们描述了用于平滑粒子流体动力学和接触检测的新并行算法,事实证明它们具有一些共同的关键特征。此外,我们描述了如何将新算法与传统的并行有限元技术结合起来以创建集成的粒子/网格瞬态动力学仿真。我们针对此问题的方法与以前的工作不同,因为我们使用了三种不同的并行分解,其中一种是用于有限元分析的静态分解,另一种是用于粒子和接触检测的动态分解。我们已经在瞬态动力学代码PRONTO-3D的并行版本中实现了我们的想法,并给出了在大型Intel Paragon上运行的代码的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号