首页> 外文会议>Intersociety energy conversion engineering conference;IECEC >THERMAL MANAGEMENT OF BATTERIES USING A VARIABLE-CONDUCTANCE INSULATION (VCI) ENCLOSURE
【24h】

THERMAL MANAGEMENT OF BATTERIES USING A VARIABLE-CONDUCTANCE INSULATION (VCI) ENCLOSURE

机译:使用可变电导绝缘(VCI)外壳对电池进行热管理

获取原文

摘要

Proper thermal management is important for optimum performance and durability of most electric-vehicle batteries. For high-temperature cells such as sodium/sulphur, a very efficient and responsive thermal control system is essential. Heat must be removed during exothermic periods and retained when the batteries are not in use. Current thermal management approaches rely on passive insulation enclosures with active cooling loops that penetrate the enclosure. This paper presents the design, analysis, and testing of an enclosure with variable conductance insulation (VCI). VCI uses a hydride with an integral electric resistance heater to expel and retrieve a small amount of hydrogen gas into a vacuum space. By controlling the amount of hydrogen gas, the thermal conductance can be varied by more than 100:1, enabling the cooling loop (cold plate) to be mounted on the enclosure exterior. By not penetrating the battery enclosure, the cooling system is simpler and more reliable. Also, heat can be retained more effectively when desired. For high temperatures, radiation shields within the vacuum space are required. Ceramic spacers are used to maintain separation of the steel enclosure materials against atmospheric loading. Ceramic-to-ceramic thermal contact resistance within the spacer assembly minimizes thermal conductance.Two full-scale (0.8-m × 0.9-m × 0.3-m) prototypes were designed, built, and tested under high-temperature (200°-350°C) battery conditions. With an internal temperature of 330°C (and 20°C ambient), the measured total-enclosure minimum heat loss was 80 watts (excluding wire pass-through losses). The maximum heat rejection was 4100 watts. The insulation can be switched from minimum to maximum conductance (hydrogen pressure from 2.0 × 10~(-3) to 8 torr) in 3 minutes. Switching from maximum to minimum conductance was longer (16 minutes), but still satisfactory because of the large thermal mass of the battery.
机译:适当的热管理对于大多数电动汽车电池的最佳性能和耐用性至关重要。对于诸如钠/硫之类的高温电池,非常有效且响应迅速的热控制系统至关重要。在放热期间必须除去热量,并且在不使用电池时要保留热量。当前的热管理方法依赖于无源绝缘外壳,其具有贯穿外壳的有源冷却回路。本文介绍了具有可变电导绝缘(VCI)的外壳的设计,分析和测试。 VCI使用带有内置电阻加热器的氢化物将少量氢气排出并回收到真空空间中。通过控制氢气的量,导热系数可以变化超过100:1,从而可以将冷却回路(冷板)安装在外壳的外部。通过不穿透电池盒,冷却系统更简单,更可靠。而且,在需要时可以更有效地保留热量。对于高温,需要在真空空间内安装辐射防护屏。陶瓷垫片用于保持钢制外壳材料在大气压力下的分离。隔离组件中的陶瓷-陶瓷热接触电阻使导热系数最小化。 在高温(200°-350°C)电池条件下设计,制造和测试了两个满量程(0.8-m×0.9-m×0.3-m)原型。内部温度为330°C(环境温度为20°C)时,测得的总外壳最小热损耗为80瓦(不包括导线通过损耗)。最大散热量为4100瓦。绝缘可以在3分钟内从最小电导切换到最大电导(氢气压力从2.0×10〜(-3)到8托)。从最大电导切换到最小电导需要更长的时间(16分钟),但是由于电池的热量很大,因此仍然令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号