首页> 外文会议>AIAA computational fluid dynamics conference >A Hybrid Reconstructed Discontinuous Galerkin and Continuous Galerkin Finite Element Method for Incompressible Flows on Unstructured Grids
【24h】

A Hybrid Reconstructed Discontinuous Galerkin and Continuous Galerkin Finite Element Method for Incompressible Flows on Unstructured Grids

机译:一个混合重建的不连续的Galerkin和非结构化网格上不可压缩流动的连续Galerkin有限元方法

获取原文

摘要

A hybrid reconstructed discontinuous Galerkin and continuous Galerkin method based on an incremental pressure projection formulation, termed rDG(P_nP_m)+CG(P_n) in this paper, is developed for solving the unsteady incompressible Navier-Stokes equations on unstructured grids. In this method, a reconstructed discontinuous Galerkin method (rDG(P_nP_m)) is used to discretize the velocity and a standard continuous Galerkin method (CG(P_n)) is used to approximate the pressure. The rDG(P_nP_m)-CG(P_n) method is designed to increase the accuracy of the hybrid DG(P_n)-CG(P_n) method and yet still satisfy Ladyzenskaja-Babuska-Brezzi (LBB) condition, thus avoiding the pressure checkerboard instability. An upwind method is used to discretize the nonlinear convective fluxes in the momentum equations in order to suppress spurious oscillations in the velocity field. A number of incompressible flow problems for a variety of flow conditions are computed to numerically assess the spatial order of convergence of the rDG(P_nP_m)+CG(P_m) method. The numerical experiments indicate that both rDG(P_0P_1)+CG(P_1) and rDG(P_1P_2)+CG(P_1) methods can attain the designed second order and third order accuracy in space for the velocity, respectively and the third order rDG(P_1P_2)+CG(P_1) method significantly outperforms its second order rDG(P_1P_1)+CG(P_1) and rDG(P_1P_1)+CG(P_1) counterparts: being able to not only increase the accuracy of the velocity by one order but also improve the accuracy of the pressure.
机译:基于增量压力投影制剂的混合重建的不连续的Galerkin和连续Galerkin方法,用于本文称为RDG(P_NP_M)+ CG(P_N),用于在非结构化网格上求解不稳定的不可压缩Navier-Stokes方程。在该方法中,使用重建的不连续的Galerkin方法(RDG(P_NP_M))来离散速度,并且标准连续Galerkin方法(CG(P_N))用于近似压力。 RDG(P_NP_M)-CG(P_N)方法旨在提高混合DG(P_N)-CG(P_N)方法的精度,仍然仍然满足LadyZenskaja-Babuska-Brezzi(LBB)条件,从而避免了压力棋盘稳定性。载入方法用于在动量方程中离散非线性对流助熔剂,以抑制速度场中的杂散振荡。计算各种流动条件的许多不可压缩的流量问题以数值评估RDG(P_NP_M)+ CG(P_M)方法的收敛空间顺序。数值实验表明RDG(P_0P_1)+ CG(P_1)和RDG(P_1P_2)+ CG(P_1)方法分别可以分别在速度和第三阶RDG的空间中获得设计的二阶和第三顺序精度(P_1P_2 )+ CG(P_1)方法显着优于其二阶RDG(P_1P_1)+ CG(P_1)和RDG(P_1P_1)+ CG(P_1)对应物:能够不仅通过一个订单增加速度的精度,而且还可以改善压力的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号