首页> 外文会议>AIAA computational fluid dynamics conference >Parallel Solution Adaptive Scheme for Three-Dimensional Turbulent Diffusion Flames with Detailed Tabulated Chemistry
【24h】

Parallel Solution Adaptive Scheme for Three-Dimensional Turbulent Diffusion Flames with Detailed Tabulated Chemistry

机译:三维湍流扩散火焰的并联解决方案采用详细的制表化学

获取原文

摘要

Mathematical modelling of the effects of turbulence on detailed-chemistry is an important issue in the accurate and reliable numerical prediction of turbulent combustion processes. The highly non-linear nature of both turbulence and chemistry make this extremely challenging. In this study, a Presumed Conditional Moment (PCM) approach, based on a β probability density function (PDF), is combined with the Flame Prolongation of ILDM (FPI) tabulation method to model the effects of turbulence and detailed-chemistry for diffusion flames. The recently proposed FPI scheme incorporates the effects of the detailed-chemistry on the local flow field for laminar flames through the use of two independent scalars: mixture fraction and progress variable and their variances. The Favre-Averaged Navier-Stokes (FANS) equations, based on the two-equation k-ω turbulence model, are used herein to model the effects of the unresolved turbulence on the mean flow field. The governing partial-differential equations for mean quantities are solved using a parallel, Adaptive Mesh Refinement (AMR), fully-coupled finite-volume formulation on body-fitted, multi-block, hexahedral mesh for three-dimensional flow geometries. Two approaches for coupling the PCM-FPI approach with the parallel AMR finite-volume solution method are considered. The PCM-FPI results are compared to experimental data for both reacting and non-reacting flows associated with a Sydney bluff-body burner configuration. The computational cost of the PCM-FPI scheme is compared to the cost of the simplified Eddy Dissipation Model (EDM). A full description of the proposed numerical solution scheme for turbulent non-premixed flames is provided along with an evaluation and demonstration of its computational performance and predictive capabilities.
机译:湍流对细化化学效果的数学建模是湍流燃烧过程的准确且可靠的数值预测中的重要问题。湍流和化学的高度非线性性质使得这极其具有挑战性。在该研究中,基于β概率密度函数(PDF)的假定条件力矩(PCM)方法与ILDM(FPI)制表方法的火焰延长相结合,以模拟湍流和细化的扩散火焰的效果。最近提出的FPI方案通过使用两个独立的标量来包括详细化学对层流火焰局部流场的影响:混合分数和进度变量及其差异。基于双等式K-Ω湍流模型的Favre平均Navier-Stokes(风扇)方程在本文中使用了在本文中模拟了未解决的湍流对平均流场的影响。用于平均数量的控制局部微分方程使用并行自适应网格细化(AMR),全耦合的有限体积配方,用于三维流动几何形状的身体装配的多块六面啮合啮合。考虑了具有并行AMR有限体积解决方法的PCM-FPI方法耦合的两种方法。将PCM-FPI结果与与悉尼诈耳燃烧器配置相关的反应和非反应流的实验数据进行比较。将PCM-FPI方案的计算成本与简化涡流耗散模型(EDM)的成本进行了比较。提供了湍流未预混火焰的提出的数值解决方案方案,以及其计算性能和预测能力的评估和演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号