首页> 外文会议> >Rotating inertia impact on propulsion and regenerative braking for electric motor driven vehicles
【24h】

Rotating inertia impact on propulsion and regenerative braking for electric motor driven vehicles

机译:旋转惯性对电动汽车的推进和再生制动的影响

获取原文

摘要

A vehicle has several rotating components such as a traction electric motor, the driveline, and the wheels and tires. The rotating inertia of these components is important in vehicle performance analyses. However, in many studies, the rotating inertias are typically lumped into an equivalent inertial mass to simplify the analysis, making it difficult to investigate the effect of those components and losses for vehicle energy use. In this study, a backward-tracking model from the wheels and tires to the power source (battery or fuel cell) is developed to estimate the effect of rotating inertias for each component during propulsion and regenerative braking of a vehicle. This paper presents the effect of rotating inertias on the power and energy for propulsion and regenerative braking for two-wheel drive (either front or rear) and all-wheel drive (AWD) cases. On-road driving and dynamometer tests are different since only one axle (two wheels) is rotating in the latter case, instead of two axles (four wheels). The differences between an on-road test and a dynamometer test are estimated using the developed model. The results show that the rotating inertias can contribute a significant fraction (8-13 %) of the energy recovered during deceleration due to the relatively lower losses of rotating components compared to vehicle inertia, where a large fraction is dissipated in friction braking. In a dynamometer test, the amount of energy captured from available energy in wheel/tire assemblies is slightly less than that of the AWD case in on-road test. The total regenerative brake energy capture is significantly higher (>70 %) for a FWD vehicle on a dynamometer compared to an on-road case. The rest of inertial energy is lost by inefficiencies in components, regenerative brake fraction, and friction braking on the un-driven axle.
机译:车辆具有多个旋转部件,例如牵引电动机,传动系统以及车轮和轮胎。这些组件的转动惯量在车辆性能分析中很重要。但是,在许多研究中,旋转惯性通常都集中到等效的惯性质量中,以简化分析,从而难以研究这些分量的影响以及车辆能量消耗的损失。在这项研究中,开发了从车轮和轮胎到动力源(电池或燃料电池)的反向跟踪模型,以估计车辆推进和再生制动期间每个组件的旋转惯性的影响。本文介绍了旋转惯性对两轮驱动(前后)和全轮驱动(AWD)情况下的推进和再生制动的动力和能量的影响。道路行驶和测功机测试有所不同,因为在后一种情况下,只有一个车轴(两个车轮)在旋转,而不是两个车轴(四个车轮)在旋转。使用开发的模型估算道路测试和测功机测试之间的差异。结果表明,与车辆惯性相比,转动惯量相对较低,因为惯性可以占减速过程中回收能量的很大一部分(8-13%),而在摩擦制动中消耗的惯量要大得多。在测功机测试中,从车轮/轮胎组件的可用能量中捕获的能量数量比在公路测试中的AWD情况要少一些。与公路行驶的情况相比,在测力计上的FWD车辆的总再生制动能量捕获量要高得多(> 70%)。其余的惯性能量会因组件效率低下,再生制动分数和非驱动轴上的摩擦制动而损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号