首页> 外文会议> >32-Channel X-band digital beamforming plug-and-play receive array
【24h】

32-Channel X-band digital beamforming plug-and-play receive array

机译:32通道X波段数字波束成形即插即用接收阵列

获取原文

摘要

Phased array architectures have evolved to a point where digital beamforming (DBF) is rapidly becoming the preferred approach for many new advanced communication and radar phased arrays that will be in production by the end of this decade. DBF is often touted as the ultimate in phased array performance, yet one of its biggest potential long-term advantages may be lower cost. Traditionally, two of the biggest cost drivers in analog phased arrays have been non-recurring engineering costs attributed to non-scalable one-of-a-kind array designs and low-volume production of high performance RF components. Very few phased arrays share common components to any great degree and nearly all utilize uniquely designed RF manifolds. The advent of DBF will likely foster scalable modular phased array designs that reduce design costs and promote higher-volume production of key RF components. Below L-band, DBF receiver components are now small enough to integrate directly behind the array within the element unit cell. Above L-band, DBF architectures often use subarrays, or row/column implementations because the receiver hardware is still too large. This paper introduces a prototype X-band receive-only DBF array with a modular, scalable architecture and a very compact profile. This DBF array architecture uses column-level digital beamforming in the azimuth plane without subarrays, and has a rectangular aperture of 512 elements, arranged in 32 columns of 1x16 elements. Each column is connected to one of 32 compact digital receiver modules, which in turn, plug directly into a 4-beam real-time parallel processor board. The DBF receiver modules are composed of two separable sections, an "RF front-end" and a "digital back-end". The RF front-end is designed for specific phased array frequency, bandwidth and dynamic range requirements, whereas the "digital back-end" design is generalized to interface with several different RF front-ends that operate at different frequencies. Interchangeability of RF front-ends is made possible using a standardized intermediate frequency (IF) interface between the RF front-end and the digital back-end, with fixed IF bandwidth and dynamic range. The overall architecture is scalable since more modules can be added to build a larger array aperture. The key limiter of DBF architecture scalability is processor load. To address this problem, we are building a multi-beam parallel processor which itself is scalable. To that end, this paper reports our progress to date in the development of this prototype modular DBF array.
机译:相控阵架构已经发展到数字波束成形(DBF)正在快速成为许多新的高级通信和雷达相控阵的首选方法,这将在该十年结束中生产。 DBF经常被吹捧为阶段阵列性能的最终,但其最大潜在的长期优势之一可能较低。传统上,模拟相位阵列中的两个最大的成本驱动因素是非经常性的工程成本,归因于不可扩展的零售阵列设计和高性能RF组件的低批量生产。很少有分阶段阵列在任何伟大程度上分享普通组件,几乎所有都使用独特设计的RF歧管。 DBF的出现可能会促进可扩展的模块化相控阵设计,从而降低设计成本并促进关键RF组件的高批量生产。在L波段下方,DBF接收器组件现在足够小,可以直接集成元素单元单元格中的阵列。在L波段上方,DBF架构通常使用子阵列或行/列实现,因为接收器硬件仍然太大。本文介绍了一种原型X波段接收的DBF阵列,具有模块化,可扩展的架构和非常紧凑的型材。该DBF阵列架构使用在方位级平面中的列级数字波束成形而没有子阵列,并且具有512个元素的矩形孔径,布置在32列的1x16元素中。每列连接到32个紧凑数字接收器模块中的一个,这又直接插入4梁实时并行处理器板。 DBF接收器模块由两个可分离部分,“RF前端”和“数字后端”组成。 RF前端专为特定的相控阵频率,带宽和动态范围要求而设计,而“数字后端”设计概括为与在不同频率下操作的多个不同的RF前端接口。使用RF前端和数字后端之间的标准化中频(IF)接口,RF前端的互换性,具有固定的IF带宽和动态范围。整体架构是可扩展的,因为可以添加更多模块以构建更大的阵列孔径。 DBF架构可伸缩性的关键限制器是处理器负载。为了解决这个问题,我们正在构建一个多光束并行处理器,它本身是可扩展的。为此,本文报告了我们在开发此原型模块化DBF阵列的日期进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号