首页> 外文会议> >Parameterization of a model-based 3D whole-body PET scatter correction
【24h】

Parameterization of a model-based 3D whole-body PET scatter correction

机译:基于模型的3D全身PET散点校正的参数化

获取原文

摘要

Parameterization of a fast implementation of the Ollinger model-based 3D scatter correction method for PET has been evaluated using measured phantom data from a GE PET Advance/sup TM/. The Ollinger method explicitly estimates the 3D single-scatter distribution using measured emission and transmission data and then estimates the multiple-scatter as a convolution of the single-scatter. The main algorithm difference from that implemented by Ollinger (1996) is that the scatter correction does not explicitly compute scatter for azimuthal angles; rather, it determines 2D scatter estimates for data within 2D "super-slices" using as input data from the 3D direct-plane (non-oblique) slices. These axial super-slice data are composed of data within a parameterized distance from the center of the super-slice. Such a model-based method can be parameterized, choice of which may significantly change the behavior of the algorithm. Parameters studied in this work included transaxial image downsampling, number of detectors to calculate scatter to, multiples kernel width and magnitude, number and thickness of super-slices and number of iterations. Measured phantom data included imaging of the NEMA NU-2001 image quality phantom, the IQ phantom with 2 cm extra water-equivalent tissue strapped around its circumference and an attenuation phantom (20 cm uniform cylinder with bone, water and air inserts) with two 8 cm diameter water-filled non-radioactive arms placed by it's side. For the IQ phantom data, a subset of NEMA NU-2001 measures were used to determine the contrast-to-noise, lung residual bias and background variability. For the attenuation phantom, ROIs were drawn on the nonradioactive compartments and on the background. These ROIs were analyzed for inter and intra-slice variation, background bias and compartment-to-background ratio. Results: In most cases, the algorithm was most sensitive to multiple-scatter parameterization and least sensitive to transaxial downsampling. The algorithm showed convergence by the second iteration for the metrics used in this study. Also, the range of the magnitude of change in the metrics analyzed was small over all changes in parameterization. Further work to extend these results to other more realistic phantom and clinical datasets is warranted.
机译:已使用来自GE PET Advance / sup TM /的实测幻象数据评估了基于Ollinger模型的PET快速实施3D散射校正方法的参数化。 Ollinger方法使用测得的发射和传输数据显式估计3D单散射分布,然后将多散射估计为单散射的卷积。与Ollinger(1996)所实现的算法的主要区别在于,散点校正不会显式计算方位角的散点。相反,它使用来自3D直接平面(非倾斜)切片的输入数据来确定2D“超切片”中数据的2D散射估计。这些轴向超级切片数据由距超级切片中心的参数化距离内的数据组成。可以对这种基于模型的方法进行参数化,选择该方法可能会大大改变算法的行为。在这项工作中研究的参数包括跨轴图像下采样,用于计算散射的检测器数量,内核宽度和大小的倍数,超切片的数量和厚度以及迭代次数。测得的幻像数据包括NEMA NU-2001图像质量幻像的成像,IQ幻像,在其圆周上绑有2 cm多余的等效水的组织以及衰减幻像(带有骨头,水和空气插入物的20 cm均匀圆柱体),其中两个8侧面放置的直径为1厘米的注水非放射性手臂。对于IQ幻象数据,使用NEMA NU-2001量度的子集来确定对比噪声,肺残留偏倚和背景变异性。对于衰减体模,在非放射性隔室和背景上绘制了ROI。分析了这些ROI的切片间和切片内变化,背景偏差和隔室与背景之比。结果:在大多数情况下,该算法对多分散参数设置最敏感,而对跨轴下采样最不敏感。该算法在第二次迭代中显示了该研究中使用的度量的收敛性。同样,在参数化的所有变化中,所分析的指标变化幅度的范围很小。有必要做进一步的工作以将这些结果扩展到其他更真实的幻象和临床数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号