首页> 外文会议> >Determination of nonresonant optical nonlinearities in undisordered and disordered semiconductor superlattices
【24h】

Determination of nonresonant optical nonlinearities in undisordered and disordered semiconductor superlattices

机译:无序无序半导体超晶格中非共振光学非线性的确定

获取原文

摘要

One of the emerging technologies for the control of nonlinear optical coefficients is quantum well disordering, opening up the possibility of integrated (with laser pump) semiconductor optical parametric oscillators. A key requirement is a predictive capability for nonlinear optical coefficients in semiconductor heterostructures and their modification under disordering. It has previously been established that induced second-order coefficients are maximised by increasing the intersubband separation, i.e., a recipe for a short period, deep well superlattice. This also has the benefit of maximising the contrast achievable under disordering. Prediction and optimisation of the linear and nonlinear optical properties requires knowledge of (1) the energies of the electronic states of the material and (2) the optical matrix elements between them (obtainable from the electronic wavefunctions). That is a suitable band structure algorithm must lie at the core of any calculation. Here an algorithm is developed for calculating the band structure in semiconductor superlattices based on the k/spl middot/p method. The basis functions for this algorithm are the topmost valence band triplet, the lowest conduction singlet and the higher triplet states and hence the model is anisotropic and non-centrosymmetric (necessary for obtaining a non-zero second-order nonlinearity). A Fourier analysis is employed transforming the Hamiltonian from coupled set of differential equations to an algebraic set. An analytic expression is found for the Fourier coefficients of a disordered alloy profile.
机译:控制非线性光学系数的新兴技术之一是量子阱无序,这为集成(带有激光泵)半导体光学参量振荡器提供了可能。关键要求是对半导体异质结构中的非线性光学系数及其在无序状态下的修正具有预测能力。先前已经确定,通过增加子带间的间隔,即短时期的深井超晶格的配方,可以使诱导的二阶系数最大化。这也具有使无序情况下可获得的对比度最大化的好处。线性和非线性光学特性的预测和优化需要了解以下方面的知识:(1)材料电子态的能量,以及(2)它们之间的光学矩阵元素(可从电子波函数获得)。那就是一种合适的带结构算法必须位于任何计算的核心。在此,基于k / spl middot / p方法,开发了一种用于计算半导体超晶格中的能带结构的算法。该算法的基本功能是最高价带三重态,最低传导单重态和较高三重态,因此该模型是各向异性且非中心对称的(获得非零二阶非线性度是必需的)。使用傅里叶分析将哈密顿量从微分方程的耦合集转换为代数集。发现了无序合金轮廓的傅立叶系数的解析表达式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号