首页> 外文会议>McMaster Symposium on Iron and Steelmaking; 20050606-09; Hamilton(CA) >STUDIES FOR THE IMPROVEMENT OF THE SECONDARY COOLING SYSTEM OF CSP THIN SLAB CASTERS
【24h】

STUDIES FOR THE IMPROVEMENT OF THE SECONDARY COOLING SYSTEM OF CSP THIN SLAB CASTERS

机译:CSP薄板坯二次冷却系统的改进研究

获取原文
获取原文并翻译 | 示例

摘要

Recent investigations of the heat transfer rate occurring during the interaction of air-mists with hot steel surfaces under conditions relevant to thin slab continuous casting have revealed that the cooling process takes place mostly in the transition-boiling regime. This cooling conditions contrast with the gentler ones characterizing the stable film-boiling regime, which prevails in conventional continuous casting. However, current operating practice is not intensive enough to guarantee that the slab leaves the supported length fully solidified at casting speeds above 5 m/min in the event of a system upset, e.g., an increase in the steel tundish temperature. Laboratory results have shown that for similar impact water fluxes the heat extraction rates can be substantially increased by increasing the typical air-nozzle pressure of 200 kPa to 250 kPa, while further increase ceases to have any effect. The implementation of these new cooling conditions in a mathematical model for thin slab solidification indicates that it is possible to reach casting velocities above 5.5 m/min without the risk that the strand liquid core length exceeds the relatively short supported length of the machine of 6.42 m. These findings have been validated by plant trials using secondary cooling strategies based on augmenting the air pressure with the water flow rate in the necessary proportion to maintain the air-to-water flow rate ratio, AAV, at a value equal to 10. The results of the trials indicate that appropriately controlled intensified cooling conditions may offer a flexible and more practical alternative for increasing the productivity of certain steel grades than enlarging the supported length of the machine.
机译:最近对薄板坯连铸相关条件下气雾与热钢表面相互作用过程中发生的传热速率的研究表明,冷却过程主要发生在过渡沸腾过程中。这种冷却条件与较温和的条件形成了鲜明的对比,后者表现出稳定的薄膜沸腾状态,而这种状态在常规连续铸造中普遍存在。但是,当前的操作实践强度不足以保证板坯在系统失调(例如钢包中间温度升高)的情况下以高于5m / min的铸造速度使支撑长度完全固化。实验室结果表明,对于类似的冲击水通量,可以通过将典型的空气喷嘴压力从200 kPa增加到250 kPa来显着提高排热率,而进一步的增加则不再具有任何作用。在薄板坯凝固的数学模型中对这些新的冷却条件的实施表明,有可能达到5.5 m / min以上的铸造速度,而无铸坯液芯长度超过机器相对较短的支撑长度6.42 m的风险。 。这些发现已通过工厂试验使用二次冷却策略进行了验证,该策略基于以必要比例增加水流量来增加空气压力,以保持空水流量比AAV等于10。结果的试验表明,与增加机器的支撑长度相比,适当控制的强化冷却条件可以为提高某些钢种的生产率提供灵活且更实用的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号