首页> 外文会议>Mathematics of data/image coding, compression, and encryption with applications XII >Error reduction in 3-dimensional metrology combining optical and touch probe data
【24h】

Error reduction in 3-dimensional metrology combining optical and touch probe data

机译:结合光学和测头数据的3维计量误差减少

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device—a coordinate measuring machine (CMM).rnBecause these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed.rnThe defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.
机译:根据美国协调关税表(HTSUS)对鞋类进行的分析部分基于识别“外部表面积上限”(ESAU)与样本鞋底之间的边界(“分界线”)。通常,该边界是模糊的。我们将分型线建立为样品外表面与其内底表面之间的弯曲交点。外表面由使用激光扫描仪获得的离散点云坐标确定。内底表面由点云数据定义,该点云数据使用触摸探针设备(坐标测量机(CMM))获得。由于这些点云数据集在空间上不重叠,因此将多项式表面拟合到内底数据并扩展为与鞋底相交。网格拟合到外表面点云。该相交线定义了ESAU边界,从而允许进行进一步的分数面积计算。定义的分型线位置对用于拟合实验数据的多项式敏感。外推到与ESAU的交点可以提高此灵敏度。我们讨论了将这些数据转换为通用参考框架的方法。考虑了以下三种情况:点云坐标中的测量误差,从将多项式曲面拟合到点云,然后外推到数据集之外,以及参考帧变换产生的误差。这些误差源会影响计算得出的表面积。我们描述了评估误差幅度,对这些误差的计算结果的敏感性以及最小化误差对计算量的影响的实验。最终,我们必须确保将这些程序产生的统计误差降到最低,并在可接受的标准范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号